- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- 机器学习数据预处理阶段为什么需要——归一化处理
参考:https://www.cnblogs.com/bjwu/p/8977141.html通常,在DataScience中,预处理数据有一个很关键的步骤就是数据的标准化。这里主要引用sklearn文档中的一些东西来说明,主要把各个标准化方法的应用场景以及优缺点总结概括,以来充当笔记。提升模型精度在机器学习算法的目标函数(例如SVM的RBF内核或线性模型的l1和l2正则化),许多学习算法中目标函数
- 「日拱一码」035 机器学习——调参过程可视化
胖达不服输
「日拱一码」机器学习人工智能调参过程可视化神经网络python模型可解释性
目录超参数搜索的3D曲面可视化交互式3D可视化神经网络学习率的3D可视化SVM超参数的3D决策边界可视化超参数优化的3D动画超参数搜索的3D曲面可视化##超参数搜索的3D曲面可视化importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfromsklearn.datasetsimportmake_
- 数据质量是机器学习项目的核心痛点,AI技术能提供智能化解决方案。
zzywxc787
pythonpandasnumpy人工智能自动化运维AI编程
一、数据质量诊断系统(Python实现)importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearn.ensembleimportIsolationForestfromtensorflow.keras.modelsimportSequentialfromte
- 十种常用数据分析模型
耐思nice~
数据分析数据分析人工智能机器学习数学建模
1-线性回归(LinearRegression)场景:预测商品销售额优点:简单易用,结果易于解释缺点:假设线性关系,容易受到异常值影响概念:建立自变量和因变量之间线性关系的模型。公式:[y=b_0+b_1x_1+b_2x_2+...+b_nx_n]代码示例:importpandasaspdfromsklearn.linear_modelimportLinearRegressionfromsklea
- K近邻算法【python】【sklearn】
weixin_44985842
python近邻算法sklearn
0定义K近邻算法(K-NearestNeighbors,KNN)是一种基于实例的监督学习算法,主要用于分类和回归任务。其核心思想是:在特征空间中,对于待预测的样本,找到与其距离最近的k个已知样本(“邻居”),根据这k个邻居的类别(分类任务)或属性值(回归任务)来决定该样本的预测结果,,常用欧氏距离公式:对于两个n维样本点xi=(xi1,xi2,...,xin)x_i=(x_{i1},x_{i2},
- 学习笔记(33):matplotlib绘制简单图表-绘制混淆矩阵热图
宁儿数据安全
#机器学习学习笔记matplotlib
学习笔记(33):matplotlib绘制简单图表-绘制混淆矩阵热图一、绘制混淆矩阵热图代码解析1.1、导入必要的库importmatplotlib.pyplotaspltfromsklearn.metricsimportconfusion_matriximportseabornassnsmatplotlib.pyplot:Python中最常用的绘图库,用于创建各种图表confusion_matr
- 使用tensorflow的线性回归的例子(七)
lishaoan77
tensorflowtensorflow线性回归人工智能
L1与L2损失这个脚本展示如何用TensorFlow求解线性回归。在算法的收敛性中,理解损失函数的影响是很重要的。这里我们展示L1和L2损失函数是如何影响线性回归的收敛性的。我们使用iris数据集,但是我们将改变损失函数和学习速率来看收敛性的改变。importmatplotlib.pyplotaspltimportnumpyasnpimporttensorflowastffromsklearnim
- 3.多层感知机
温柔济沧海
深度学习深度学习人工智能多层感知机
3.1从零实现多层感知机#数据集导入importtorchimporttorchvisionfromtorchvisionimporttransformsimportmatplotlib.pyplotaspltfromtorch.utils.dataimportDataLoaderfromtorchimportnnfromtqdmimporttqdmfromsklearn.metricsimpor
- Aletheia 情感智能模型:完整实现
Aletheia情感智能模型,整合所有核心模块并解决之前指出的问题。这个实现包含完整的神经动力学系统、多模态情感融合、伦理约束场和量子意识接口。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.integrateimportodeintfromsklearn.decompositionimportPCAimporttorchimporttor
- 使用AutoKeras2.0的AutoModel进行结构化数据回归预测
1、FirstofAll:ReadTheFuckingSourceCodeimportautokerasasakimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportmean_squared_error#生成数据集np.random.seed(42)x=np.random.r
- 使用 Bank Churn 数据集进行二元分类
一、前言分类任务:预测客户是继续使用其帐户还是关闭帐户(例如,流失)项目地址:https://www.kaggle.com/competitions/playground-series-s4e1二、具体步骤(一)数据导入与预览importpandasaspdimportnumpyasnpimportmatplotlib.pylabaspltimportseabornassnsfromsklearn
- 线性回归 python代码
黄涵奕
python线性回归numpy机器学习开发语言
下面是一个线性回归模型的Python代码示例:importnumpyasnpfromsklearn.linear_modelimportLinearRegression#训练数据x=np.array([[1],[2],[3],[4],[5]])y=np.array([5,7,9,11,13])#建立模型reg=LinearRegression().fit(x,y)#预测reg.predict(np
- 深度学习篇---简单果实分类网络
下面我将提供一个使用Python从零实现果实分类模型的完整流程,包括数据准备、模型构建、训练和部署,不依赖任何深度学习框架,仅使用NumPy进行数值计算。1.数据准备与预处理首先需要准备果实图像数据集,将其分为好果和坏果两类,并进行预处理:importosimportnumpyasnpfromPILimportImagefromsklearn.model_selectionimporttrain_
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- python训练60天挑战-day51
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高kaggl的一个图像数据集;数据集地址:LungNoduleMalignancy肺结核良恶性判断三层卷积CNN做到的精度63%,现在需要实现提高。importosimportpandasaspdimportnumpyasnpfromsklearn.model_se
- Day36 复习日
cylat
python打卡深度学习机器学习人工智能python神经网络
目录一、对之前的信贷项目,利用神经网络训练下二、尝试进入nn.Module中,查看他的方法模型训练与评估相关参数管理相关模块管理相关设备相关钩子函数相关一、对之前的信贷项目,利用神经网络训练下importtorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.model_selectionimporttrain_test_splitfr
- 线性回归(Linear regression)算法详解
.30-06Springfield
人工智能算法详解算法线性回归回归python人工智能机器学习
文章目录一、线性回归基础概念1.1什么是线性回归1.2线性回归小例子二、sklearn中线性回归的API和参数2.1安装sklearn2.2LinearRegression2.3SGDRegresso2.4Lasso2.5Ridge2.6各个API的对比三、使用sklearn实现线性回归3.1程序概述3.2核心功能3.3关键技术细节3.4程序运行结果3.5代码结构一、线性回归基础概念1.1什么是线
- Python训练营-Day40
m0_72314023
python开发语言
importtorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.model_selectionimporttrain_test_splitfromsklearn.preprocessingimportMinMaxScalerimporttimeimportmatplotlib.pyplotaspltfromtqdmimporttqd
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理
西猫雷婶
人工智能机器学习python学习笔记机器学习python人工智能深度学习scikit-learn
【1】引言前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客此次继续深入,研究多文本的综合处理。【2】代码测试首先相对于单文本测试,直接将文本改成多行文本:#引入必要的模块fromsklearn.feature_extraction.te
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 【无标题】
FAUNAAAAAA
cocoa
Day55importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.preprocessingimportMinMaxScalerfromsklearn.ensembleimportRandomForestRegressorfromsklearn.metricsimportmean_squared_error#==================
- Python实例题:基于 KNN 算法的手写数字识别
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于KNN算法的手写数字识别要求:实现一个基于K-NearestNeighbors(KNN)算法的手写数字识别系统。支持以下功能:使用MNIST数据集训练和测试模型实现KNN分类算法可视化手写数字样本评估模型性能(准确率、混淆矩阵等)添加用户交互界面,允许用户绘制数字并进行识别。解题思路:使用sklearn加载MNIST数据
- python-拆解sklearn中决策树
weixin_41177022
scikit-learn决策树python机器学习编程
获取树结构实体对scikit-learn中DecisionTreeClassifier/Regressor的实例调用.tree_属性可以得到树结构。参考sklearn的决策树的官方说明sklearn.tree.DecisionTreeClassifier(不过里面说的help(sklearn.tree._tree.Tree)似乎不管用)获取决策树基本信息node总数可以用model.tree_.n
- Day33打卡 @浙大疏锦行
ayuan0119
python打卡shupython
知识点回顾:PyTorch和cuda的安装查看显卡信息的命令行命令(cmd中使用)cuda的检查简单神经网络的流程数据预处理(归一化、转换成张量)#仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集fromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitimportnumpyasnp
- day38
心落薄荷糖
Python训练营python
importtorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.model_selectionimporttrain_test_splitfromsklearn.preprocessingimportMinMaxScalerimporttimeimportmatplotlib.pyplotaspltfromtqdmimporttqd
- Python打卡:Day24
剑桥折刀s
python打卡python
importpandasaspdimportnumpyasnpimportreimportxgboostasxgbfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportclassification_report,confusion_matrix,accuracy_score,precision_score
- Python打卡:day23
剑桥折刀s
python打卡python开发语言
作业:整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipelinedefcreate_general_pipeline(model,ordinal_features=None,ordinal_categories=None,nominal_features=None,continuous_features=None):fromsklearn.pipelineimportPipe
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs