手把手教你监督学习(附python实战代码)

手把手教你监督学习(附python实战代码)_第1张图片

为什么选择人工智能和机器学习?

人类的未来是人工智能/机器学习。任何不了解的它们的人很快就会发现自己已经落后了。在这个充满创新的世界中醒来感觉科技越来越像魔术。有许多种方法和技术来执行人工智能和机器学习来解决实时问题,其中监督学习是最常用的方法之一。

什么是监督学习?

在监督学习中,我们从导入包含训练属性和目标属性的数据集开始。监督式学习算法将学习训练样本与其相关目标变量之间的关系,并应用该学习关系对全新输入(无目标)进行分类。

为了说明监督学习是如何工作的,让我们从一个根据他学习的小时数来预测学生分数的例子。

在数学上,Y = f(X)+ C

其中,f将是标记学生为考试准备的小时数之间的关系;

X是INPUT(他准备的小时数);

Y是输出(标记在考试中得分的学生);

C将是随机错误。

监督学习算法的最终目标是以给定的新输入X,输出最大精度预测Y。算法工程师们已经发明了几种方法来实现监督学习,我们将探索一些最常用的方法。

基于给定的数据集,机器学习问题分为两类:分类和回归。如果给定的数据同时具有输入(训练)值和输出(目标)值,那么这是一个分类问题。如果数据集具有不带任何目标标签的属性的连续数值,则它属于回归问题。例如:

分类:有输出标签,它是猫还是狗?

回归:房子卖多少钱?

分类

举一个一位希望分析乳腺癌数据的医学研究人员的例子,以预测患者应接受三种特定治疗中的哪一种。该数据分析任务被称为分类,其中构建模型或分类器以预测类别标签,诸如“处理A”,“处理B”或“处理C”。

分类是预测问题,包括分类预测和分类无序的类别标签。这是一个两步过程,由学习步骤和分类步骤组成。

分类的最佳方法

一些最常用的分类算法

1.K-最近邻;

2.决策树;

3.朴素贝叶斯;

4.支持向量机;

在学习步骤中,分类模型通过分析训练集来建立分类器。在分类步骤中是预测给定数据的类别标签。分析中的数据集元组及其关联的类标签被分成一个训练集和测试集。构成训练集的各个元组从随机抽样的数据集中进行分析。剩余的元组形成测试集并且独立于训练元组,这意味着它们不会用于构建分类器。

原文链接

你可能感兴趣的:(手把手教你监督学习(附python实战代码))