经过了二十多年的粗放式快速发展,中国的制鞋业经历了高速发展阶段,当前以出口为主的制鞋产业,面对国际市场的萎缩,又加上来自主要市场国的反倾销等贸易保护措施下行压力较大,制鞋行业进入调整期。
目前鞋服类企业主要面临的挑战是:
1、 新的销售渠道崛起:随着年轻一代成长为消费主力,线上销售渠道受到追捧,而传统百货渠道的客流量近年来则面临衰减,部分鞋类品牌被迫对终端渠道进行调整,频频关店。
2、消费者需求的转变:伴随着消费观念的变化,消费者的品牌忠诚度出现下降,逐渐把注意力放在设计感和性价比上,而不像以往一味追求品牌。同时部分中国鞋业品牌对市场发展趋势的反应滞后,对市场趋势的认识不足,多家企业均出现了利润大幅度下滑的现象。
3、生产模式的变化:国际品牌多已逐渐走向做小量化、个性化、定制化的订单模式,然而多数中国鞋业品牌依然执着于大批量、同质化产品的生产模式。在无法适应生产模式的表象下,它所真正体现的是鞋类品牌公司对终端市场情况判断不准确,对市场发展趋势预期不足,导致库存层层积压,最终影响后续的产品更新及公司运作,使得品牌缺乏市场竞争力。
从销售渠道的转变,到终端消费者的需求改变,乃至生产模式的变化,都需要新型的、敏捷的商业模式和生产方式来应对,决定了背后做支撑的传统IT架构不再适用,必须转变成为一种弹性的、灵活的IT基础架构。于是,上云就成为了鞋服类企业迫在眉睫的需求和必然选择。
B集团是中国鞋业规模最大的公司,年销售额超过400亿元人民币,在国内的鞋服类企业中属于当之无愧的领军人物。目前客户的业务分布在深圳和北京等地,其主要的业务系统示意图如图一。主要分为四个体系:
图一
业务系统之间的调用关系可以参考图二。业务系统,如供应链、市场和门店系统等,围绕零售交易和零售货品这两个核心系统进行数据的交互,确保业务的协同进行和数据的一致同步。
图二
通过对客户深度调研与沟通,我们归纳出客户对于新的IT架构主要的诉求为以下几点:
客户在现有的服务器系统中使用了大量的虚拟机,主要应用在北京新零售、上海体总、会员、零售货品部和零售交易部等多个部门。现在流量的特点是内存占有率较高,但是CPU占用率比较低,一般在10-20%上下,原有的虚拟化系统也采用了CPU超分的技术,超分的比例为1:8。
针对客户的虚拟化系统,阿里云推荐了DDH的云上虚拟化方案,并且针对客户的实际配置,对比了线下IDC和DDH的TCO。
虽然云上虚拟化部分的TCO相对线下有一定程度的增加,但是有效的提高了资源利用率,总体上节省了成本(见后续分析),还给客户带来更多提升:
目前客户在部分对外的业务中使用了MySQL数据库。在日常的使用过程中,往往面临性能和可用性的瓶颈,会导致业务受到影响。综合客户的反馈来看,其数据库主要的优化点如下:
对比来看,云上RDS相对客户自建数据库,总体TCO下降38%,并且还可以带来的提升有:
客户目前的中间件主要是部署在线下的服务器上,日常使用过程中,也时常面临着扩展能力低、灵活性不强的问题。综合对比了云上Redis托管配合其他自建,以及客户完全在云上自建,两种方案的成本等因素,我们推荐了前者。主要对比的方案优劣如下:
综合来看,采用云上Redis托管配合其他中间件自建的方案,总体TCO下降了7%,与此同时,还可以带来的提升有:
客户现有的大数据系统是利用开源系统自己构建的数据分析系统,日常面临着性能不足的问题。阿里云设计了三条路径,路径一是基于ECS大数据机型的迁移方案,即客户自建方案;路径二是基于EMR的开源Hadoop全兼容迁移方案,即客户半托管方案;路径三是基于阿里云自研产品的迁移方案,即客户全托管方案。从迁移复杂度、运维投入和集群扩展能力等多个维度来看,最终推荐了路径二。
云上与云下的数据库TCO大致相同,但是可以给用户带来的提升有:
综合服务器虚拟化、数据库、中间件和大数据系统等子系统来看,总体TCO下降8.5%。
与此同时,如上文所述,虚拟化系统在灵活性和可用性、数据库系统在性能和可用性、大数据系统在性能和运维能力上,都得到了不同程度的提升。如果加上考虑扩容成本、数据异地灾备风险成本、一次性投入资金成本,实际给客户带来的TCO优化幅度更大。
迁移之前,需要根据应用类型决定迁移策略和优先级。例如可以分为可以轻松迁移的应用,例如开发/测试应用、Web应用(电商、官网、公众号)、视频直播/点播、在线培训和知识管理等,以及需要详细设计迁移方案的应用,例如非Linux/Windows操作系统的应用、CS架构的应用、垂直扩展的大型应用和有强依赖的复杂应用等。
结合客户的现状与迁移的迫切程度,按照前台、中台和后台的迁移顺序,可以大致分为三个迁移阶段:
阶段一:前台业务迁移
以北京新零售业务系统作为迁移的示例。原系统包括了应用层后端服务、数据服务层和业务数据库层,其流量模型是逐层进行访问的。系统架构图如图三:
图三 北京新零售系统架构图
结合之前的产品建议和优化方案,每一层的部署建议和优化方案如下
图四 北京新零售业务云上架构图
通过对于迁云前后的各项子系统的成本、性能等诸方面对比,可以看到对于用户迁移的价值有:
场景 | 涉及产品 |
---|---|
应用接入层 | ECS+DDH部署 |
负载均衡层 | SLB部署 |
API层 | ECS+DDH部署 |
数据库层 | 采用RDS+云Redis部署 |
文件存储层 | OSS冷热数据分离 |
大数据系统 | EMR部署 |
原文链接
本文为阿里云原创内容,未经允许不得转载。