- 内存受限编程:从原理到实践的全面指南
景彡先生
C++进阶c++缓存
在嵌入式系统、物联网设备、移动应用等场景中,内存资源往往极为有限。如何在内存受限的环境中设计高效、稳定的程序,是每个开发者都可能面临的挑战。本文将从硬件原理、操作系统机制、算法优化到代码实现技巧,全面解析内存受限编程的核心技术。一、内存受限环境概述1.1典型内存受限场景场景可用内存范围典型应用8位单片机几KB-64KB传感器节点、简单控制器32位嵌入式系统64KB-512MB智能家居设备、工业控制
- Win10电脑连接手机热点全攻略:从基础操作到进阶技巧
nntxthml
电脑智能手机windows
Win10电脑连接手机热点全攻略:从基础操作到进阶技巧在移动办公场景日益普及的今天,掌握电脑连接手机热点的方法已成为职场人的必备技能。本文通过图文结合的方式,系统讲解Win10系统连接手机热点的完整流程,并提供网络优化、安全设置等进阶技巧,帮助读者高效解决紧急用网需求。一、基础操作篇:三步完成热点连接(1)手机端设置:开启移动WiFi基站不同品牌手机设置路径略有差异,但核心步骤一致:安卓系统:设置
- 微信小程序案例 - 本地生活(列表页面)
一、前言随着微信小程序的普及,越来越多的生活服务类应用开始基于微信小程序进行开发。其中,“本地生活”类小程序(如美食、团购、周边游等)因其贴近用户日常需求而广受欢迎。本篇文章将以一个“本地生活列表页面”的实际案例为例,手把手带你实现一个完整的微信小程序本地生活类首页列表页面,包括:✅页面结构设计✅数据绑定与渲染✅列表项布局与样式优化✅下拉刷新与上拉加载更多✅搜索功能初步实现✅真实数据模拟与静态化处
- 基于生成对抗网络增强主动学习的超高温陶瓷硬度优化
神经网络15044
深度学习算法仿真模型生成对抗网络学习人工智能
复现论文:基于生成对抗网络增强主动学习的超高温陶瓷硬度优化我将使用Python复现这篇关于使用生成对抗网络(GAN)增强主动学习来优化超高温陶瓷(UHTC)硬度的研究论文。以下是完整的实现代码和解释。1.环境准备和数据加载首先,我们需要准备必要的Python库并加载数据。importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimpor
- 学习笔记(39):结合生活案例,介绍 10 种常见模型
宁儿数据安全
#机器学习学习笔记生活
学习笔记(39):结合生活案例,介绍10种常见模型线性回归只是机器学习的“冰山一角”!根据不同的任务场景(分类、回归、聚类等),还有许多强大的模型可以选择。下面我用最通俗易懂的语言,结合生活案例,介绍10种常见模型及其适用场景:一、回归模型(预测连续值,如房价)1.决策树(DecisionTree)原理:像玩“20个问题”游戏,通过一系列判断(如“面积是否>100㎡?”“房龄是否0.5就判为“会”
- 2023-01-05
图灵基因
Nature|重新优化突变负荷指导免疫治疗决策原创三千图灵基因2023-01-0509:55发表于江苏收录于合集#前沿分子生物学机制撰文:三千IF=69.504推荐度:⭐⭐⭐⭐⭐亮点:通过与肿瘤/非肿瘤组织配对测序结果对比发现,因为不正确地将胚系突变指定为肿瘤突变,仅肿瘤组织测序分析大大高估了TMB,特别是非欧洲血统的患者。基于回归分析,提出了一种以遗传特异性的方式重新校准肿瘤检测组的TMB值的方
- LLM系统性学习完全指南(初学者必看系列)
GA琥珀
LLM学习人工智能语言模型
前言这篇文章将系统性的讲解LLM(LargeLanguageModels,LLM)的知识和应用。我们将从支撑整个领域的数学与机器学习基石出发,逐步剖析自然语言处理(NLP)的经典范式,深入探究引发革命的Transformer架构,并按时间顺序追溯从BERT、GPT-2到GPT-4、Llama及Gemini等里程碑式模型的演进。随后,我们将探讨如何将这些强大的基础模型转化为实用、安全的应用,涵盖对齐
- 探索OpenCV 3.2源码:计算机视觉的架构与实现
轩辕姐姐
本文还有配套的精品资源,点击获取简介:OpenCV是一个全面的计算机视觉库,提供广泛的功能如图像处理、对象检测和深度学习支持。OpenCV3.2版本包含了改进的深度学习和GPU加速特性,以及丰富的示例程序。本压缩包文件提供了完整的OpenCV3.2源代码,对于深入学习计算机视觉算法和库实现机制十分宝贵。源码的模块化设计、C++接口、算法实现、多平台支持和性能优化等方面的深入理解,都将有助于开发者的
- python automl_自动化的机器学习(AutoML):将AutoML部署到云中
编辑推荐:在本文中,将介绍一种AutoML设置,使用Python、Flask在云中训练和部署管道;以及两个可自动完成特征工程和模型构建的AutoML框架。本文来自于搜狐网,由火龙果软件Alice编辑、推荐。AutoML到底是什么?AutoML是一个很宽泛的术语,理论上来说,它囊括从数据探索到模型构建这一完整的数据科学循环周期。但是,我发现这个术语更多时候是指自动的特征预处理和选择、模型算法选择和超
- 性能优化实践:Modbus 在高并发场景下的吞吐量提升(一)
一、引言**在工业自动化领域,Modbus协议凭借其简单易用、开放性高以及广泛的设备支持等特点,成为了设备间通信的重要标准之一。自1979年由Modicon公司(现为施耐德电气)首次开发以来,Modbus协议历经多年发展,已广泛应用于各类工业场景,从工厂自动化生产线到智能建筑控制系统,从能源管理系统到远程监控平台,Modbus协议无处不在,连接着各种不同类型的设备,实现数据的交换与控制指令的传递。
- python--自动化的机器学习(AutoML)
Q_ytsup5681
python自动化机器学习
自动化机器学习(AutoML)是一种将自动化技术应用于机器学习模型开发流程的方法,旨在简化或去除需要专业知识的复杂步骤,让非专家用户也能轻松创建和部署机器学习模型**[^3^]。具体介绍如下:1.自动化的概念:自动化是指使设备在无人或少量人参与的情况下完成一系列任务的过程。这一概念随着电子计算机的发明和发展而不断进化,从最初的物理机械到后来的数字程序控制,再到现在的人工智能和机器学习,自动化已经渗
- 前端性能优化“核武器”:新一代图片格式(AVIF/WebP)与自动化优化流程实战
前端性能优化“核武器”:新一代图片格式(AVIF/WebP)与自动化优化流程实战当你的页面加载时间超过3秒时,用户的跳出率会飙升到40%以上。而在所有的前端性能优化手段中,图片优化无疑是投入产出比最高的一环。一张未经优化的巨大图片,就足以让你的所有努力付诸东流。然而,很多开发者对图片优化的理解还停留在“压缩一下JPG”的阶段。实际上,我们已经进入了一个由WebP和AVIF主导的新时代。这两种新一代
- 最新1区9+非肿瘤纯生信,逻辑清晰易懂,机器学习筛选关键基因的纯生信也可以发高水平期刊,抓紧上车!
生信小课堂
影响因子:9.186关于非肿瘤生信,我们也解读过很多,主要有以下类型1单个疾病WGCNA+PPI分析筛选hub基因2单个疾病结合免疫浸润,热点基因集,机器学习算法等。3两种相关疾病联合分析,包括非肿瘤结合非肿瘤,非肿瘤结合肿瘤或者非肿瘤结合泛癌分析4基于分型的非肿瘤生信分析5单细胞结合普通转录组生信分析目前非肿瘤生信发文的门槛较低,欢迎大家!研究概述:本研究首先使用R语言在三个基因表达数据集中找到
- 学生信息管理系统的VFP数据库设计与实现
溪水边小屋
本文还有配套的精品资源,点击获取简介:《学生管理系统vfp数据库》是一个基于VisualFoxPro(VFP)的学生信息管理软件,旨在帮助教育机构记录、管理学生数据并提供分析功能。该系统包括数据库设计、用户界面设计、数据操作、事务处理、报表统计、安全性管理、程序架构及代码优化等核心功能。学生管理系统是VFP数据库开发的学习和实践平台,适用于初学者。1.VisualFoxPro数据库开发基础Visu
- 轻松掌握EasyX图形库在Visual C++ 6.0中的应用
Randy Rhoads
本文还有配套的精品资源,点击获取简介:EasyX图形库为VisualC++6.0环境提供了简便的图形界面编程功能。它包括丰富的图形绘制、图像处理、文字操作、图形变换和事件处理等核心特性,辅以详细的API文档和示例代码。该库支持在多个操作系统版本上运行,且具有优化的性能,极大地简化了图形界面的开发流程。1.easyX图形库概述1.1引言easyX图形库是一个基于Windows操作系统的简单易用的图形
- 函数接口设计:为什么需要封装数据结构?
ice.Ynov23
数据结构C++学习笔记算法开发语言
文章目录背景1.提高代码可读性和可维护性问题表现解决方案2.减少参数传递的复杂性问题表现解决方案3.便于扩展和修改问题表现解决方案4.增强数据完整性问题表现解决方案5.降低耦合性6.提高性能(间接优化)何时选择封装数据结构?不适合封装的场景总结对比最佳实践背景在函数接口设计中,我们会面临传递大量参数的场景,此时你是会选择传递多个单独的参数?还是选择封装数据结构(如结构体、类或对象)?1.提高代码可
- CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界
AI专题精讲
强化学习人工智能强化学习AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"CPO:对比偏好优化—突破大型语言模型在机器翻译中的性能边界摘要中等规模的大型语言模型(LLMs),如参数量为7B或13B的模型,在机器翻译(MT)任务中展现出良好性能。然而,它们仍未能达到最先进的传统编码器-解码器翻译模型,或是如GPT-4(OpenAI,2023)等更大规模LLM的表现。在本研究中,我们致力于弥合这一性能差距。我们首先评估了在机器翻译任
- MDB 4.3 协议文档详细介绍
MDB4.3协议文档详细介绍【下载地址】MDB4.3协议文档详细介绍MDB4.3协议是2019年发布的多点总线通信协议,专为售货机与纸币器、硬币器、刷卡器等设备设计。该版本新增了远程售货机功能,支持无现金支付和移动应用操作,极大提升了用户体验。此外,协议还优化了触摸屏处理,避免无效操作,并引入了购物车和优惠券功能,丰富了促销方式。MDB4.3通过技术升级,提升了售货机的操作灵活性和系统稳定性,为自
- 深入解析Battelle/movfuscator项目的后处理技术
邹滢朦
深入解析Battelle/movfuscator项目的后处理技术项目概述Battelle/movfuscator是一个独特的编译器项目,它能够将C代码转换为仅使用MOV指令的汇编代码。而其后处理器(post-processor)组件则提供了更多强大的功能扩展,可以将这些汇编代码进一步转换为使用特定指令集的版本,实现更深层次的代码混淆和优化。后处理器工作原理后处理器的工作流程分为以下几个关键步骤:首
- 成长锦囊[82]:心理咨询师在个人成长中如何设定目标?
素心人生设计
Q:素心,在进行个人自我成长时,我要如何确定设定自己的成长目标?心理咨询师小雨正在学习认知行为疗法技术,想要更熟练精通这个心理技术,也想要进行认知行为咨询师的自我成长,前来咨询。@素心人生设计:我们进入到个人成长的模块2:解析问题,为改变做准备。这个模块的目标是帮助你发现更多挑战性问题,并明确你希望这个问题如何改变。今天为大家分享识别优势、设定目标、优化目标和制定达成策略。在上一部分我们有了五因素
- 考场/工厂违规用机难捕捉?3维度优化方案部署成本直降40%
2501_92487762
视觉检测计算机视觉算法目标检测
开篇痛点工业场景中传统玩手机识别面临三重挑战:小目标检测(手机平均像素占比<0.5%)、遮挡干扰(人手/物体遮挡率超60%)、实时性要求(需200ms内响应)。某安检企业反馈,开源YOLOv5在车间场景误报率高达34%。技术解析:双流特征融合架构陌讯算法创新性融合双路径特征(图1):#陌讯核心代码逻辑(简化版)defdual_path_fusion(backbone):shallow_path=C
- 复杂场景检测失效?陌讯多模态算法在千万级监控网的落地实战
2501_92473061
算法视觉检测安全计算机视觉
开篇痛点:安防监控的检测困境"明明人就在画面里,系统却毫无反应!"——这是某智慧园区安防负责人的吐槽。传统目标检测模型在安防监控场景面临三大死穴:漏报:夜间、遮挡场景下召回率骤降(实测ResNet50漏报率>40%)误报:树叶晃动、光影变化引发的误报占比超35%延迟:1080P视频流检测延迟普遍>100ms,难以满足实时响应需求技术解析:陌讯算法的三阶优化架构陌讯视觉算法采用多模态特征金字塔(MM
- lesson17:Python函数之递归、匿名函数与变量作用域
目录引言一、递归函数:用自身解构复杂问题1.递归的基本结构2.递归的典型应用场景3.递归的优缺点与优化二、匿名函数:用lambda实现“一句话函数”1.lambda与普通函数的区别2.lambda的典型应用3.lambda的局限性三、变量作用域:理解LEGB规则1、LEGB规则的深度解析(1)Local(局部作用域)(2)Enclosing(嵌套作用域)(3)Global(全局作用域)(4)Bui
- 深度学习超参数优化(HPO)终极指南:从入门到前沿
摘要:在深度学习的实践中,模型性能的好坏不仅取决于算法和数据,更在一半程度上取决于超参数的精妙设置。本文是一篇关于超参数优化(HyperparameterOptimization,HPO)的综合性指南,旨在带领读者从最基础的概念出发,系统性地梳理从经典到前沿的各类优化方法,并最终落地于实用策略和现代工具。无论您是初学者还是资深从业者,都能从中获得宝贵的见解。第一部分:夯实基础——HPO的核心概念1
- 性能优化 —— 通过移除 pagefile.sys 和 hiberfil.sys 文件释放C盘空间(不推荐)
ice.Ynov23
WindowsSolutionswindows
通过移除pagefile.sys和hiberfil.sys文件释放C盘空间(不推荐)点击查看->选项->文件夹选项->查看,取消勾选“隐藏受保护的操作系统文件(推荐)”,选择“显示隐藏的文件,文件夹和驱动”,C盘下面会出现三个文件hiberfil.sys,pagefile.sys还有swapfile.sys那么问题来了:文件hiberfil.sys,pagefile.sys是干啥的呀?可以删掉么?
- 飞算JavaAI:Java开发者的智能革命,从代码生成到架构重塑
目录一、Java开发困局:效率与质量的双重挑战二、技术架构解析:三层智能引擎驱动开发革命1.智能语义理解层2.代码智能生成层3.运行时智能优化层三、核心功能矩阵:从需求到部署的全流程覆盖1.智能需求分析2.自动化软件设计3.工程化代码输出4.智能重构引擎四、实战场景解析:从初创项目到老系统改造场景1:初创项目快速验证场景2:老系统迭代升级场景3:高并发系统优化五、开发者价值重构:从代码工人到系统设
- 飞算 JavaAI 深度体验:开启 Java 开发智能化新纪元
♡喜欢做梦
飞算JavaAI炫技赛Java开发
个人主页:♡喜欢做梦欢迎点赞➕关注❤️收藏评论目录一、引言二、飞算JavaAI初印象与功能概览(一)初识(二)核心功能模块概览三、智能代码生成功能深度体验(一)基础场景测试(二)复杂业务逻辑场景(三)代码生成功能总结四、代码优化建议功能测评(一)测试用例准备(二)优化建议(三)进一步复杂代码测试(四)代码优化功能总结五、故障诊断与修复功能实践(一)模拟常见Java故障场景一、引言在当今软件开发领域
- 在 Ant Design Vue 中实现滚动页面时保持下拉菜单展开
王旭晨
vue.jsjavascript前端
引言在使用AntDesignVue的组件时,默认情况下,当用户滚动页面时,下拉菜单会自动关闭。这在某些场景下可能不够友好,例如在一个长表单中需要频繁切换选项时。本文将介绍如何通过配置和代码优化,实现滚动页面时保持下拉菜单展开的功能,同时不影响其他交互。问题分析为什么滚动页面会关闭下拉菜单?AntDesignVue的下拉组件(如)默认会监听页面的滚动事件。当滚动发生时,组件会认为用户意图离开当前操作
- 深入TA-Lib:量化技术指标详解
深入TA-Lib:量化技术指标详解本文系统讲解TA-Lib技术指标分析,涵盖基础、数据处理、趋势与动量指标、均量线、布林线等,并结合Python代码与大数据、机器学习实战案例,助力读者掌握量化交易实战技巧。本文系统梳理了TA-Lib技术指标分析的核心内容,包括TA-Lib基础、数据处理、趋势与动量指标、均量线、布林线等关键技术指标分析方法,并结合Python代码示例与大数据、机器学习的融合实战案例
- AI 人工智能与 Copilot 的融合发展策略
AI天才研究院
AI人工智能与大数据人工智能copilotai
AI人工智能与Copilot的融合发展策略关键词:人工智能、Copilot、代码生成、人机协作、机器学习、自然语言处理、软件开发摘要:本文探讨了人工智能与Copilot技术的融合发展策略。我们将从技术原理、实现方法、应用场景等多个维度深入分析,提出一套完整的融合框架和发展路径。文章首先介绍背景和核心概念,然后详细讲解关键技术,包括自然语言处理、代码生成算法等,接着通过实际案例展示应用效果,最后讨论
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后