对象池的实现原理分析

文章目录

  • 什么是对象池?
  • 有哪些场景需要使用对象池?
    • fmt包的应用
    • 字符串拼接应用
  • 对象池的实现(go1.12)
    • 相关结构定义
    • 设计思想
    • 对象池中获取对象
    • 向对象池归还对象
    • GC回收对象池
  • 对象池的升级(go1.13)
    • 结构的调整
    • 方法实现调整
    • 性能的提升
  • 参考资料

什么是对象池?

对象池从字面上来理解,就是一个能存储很多对象的池子。在Go里面,对象池是通过使用sync包里的Pool结构来实现的,对象池能提高内存复用,减少内存申请次数,甚至能降低CPU消耗,是高并发项目优化不可缺少的手法之一。

作者的解释如下:

// A Pool is a set of temporary objects that may be individually saved and
// retrieved.
//
// Any item stored in the Pool may be removed automatically at any time without
// notification. If the Pool holds the only reference when this happens, the
// item might be deallocated.
//
// A Pool is safe for use by multiple goroutines simultaneously.
//
// Pool’s purpose is to cache allocated but unused items for later reuse,
// relieving pressure on the garbage collector. That is, it makes it easy to
// build efficient, thread-safe free lists. However, it is not suitable for all
// free lists.

有哪些场景需要使用对象池?

在go源码里,作者对sync.Pool使用做了如下的建议:

// An appropriate use of a Pool is to manage a group of temporary items
// silently shared among and potentially reused by concurrent independent
// clients of a package. Pool provides a way to amortize allocation overhead
// across many clients.
//
// On the other hand, a free list maintained as part of a short-lived object is
// not a suitable use for a Pool, since the overhead does not amortize well in
// that scenario. It is more efficient to have such objects implement their own
// free list.
//
// A Pool must not be copied after first use.

fmt包的应用

fmt.Sprintf()
var ppFree = sync.Pool{
        New: func() interface{} { return new(pp) },
}

// newPrinter allocates a new pp struct or grabs a cached one.
func newPrinter() *pp {
        p := ppFree.Get().(*pp)
        p.panicking = false
        p.erroring = false
        p.wrapErrs = false
        p.fmt.init(&p.buf)
        return p
}
// free saves used pp structs in ppFree; avoids an allocation per invocation.
func (p *pp) free() {
        // Proper usage of a sync.Pool requires each entry to have approximately
        // the same memory cost. To obtain this property when the stored type
        // contains a variably-sized buffer, we add a hard limit on the maximum buffer
        // to place back in the pool.
        //
        // See https://golang.org/issue/23199
        if cap(p.buf) > 64<<10 {
                return
        }

        p.buf = p.buf[:0]
        p.arg = nil
        p.value = reflect.Value{}
        p.wrappedErr = nil
        ppFree.Put(p)
}

// Sprintf formats according to a format specifier and returns the resulting string.
func Sprintf(format string, a ...interface{}) string {
        p := newPrinter()
        p.doPrintf(format, a)
        s := string(p.buf)
        p.free()
        return s
}

字符串拼接应用


var bytePool = sync.Pool{
        New: func() interface{} {
                buf := make([]byte, 0, 4096)
                return buf
        },
}
var ch = make(ch []byte,1000)

func main(){
 go func(){
  for msg := range ch {
   fmt.Println("recv msg")
      msg = msg[:0]
      bytePool.Put(msg)
  }
 }
 ...
 for i:0;i<=100000;i++ {
  lineBuf := bytePool.Get().([]byte)
  lineBuf = append(lineBuf, topic)
  lineBuf = append(lineBuf, position)
  lineBuf = append(lineBuf, info)
  lineBuf = append(lineBuf, data)
  ch <- lineBuf
 }

 time.Sleep(5 * time.Minute)
}

对象池的实现(go1.12)

相关结构定义

Pool

type Pool struct {
        noCopy noCopy

        local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal       
        localSize uintptr        // size of the local array

        // New optionally specifies a function to generate
        // a value when Get would otherwise return nil.
        // It may not be changed concurrently with calls to Get.
        New func() interface{}
}
  • noCopy      防止copy
  • local           本地对象池
  • localSize    本地对象池的大小
  • New           生成对象的接口方法

poolLocal


type poolLocal struct {
        poolLocalInternal

        // Prevents false sharing on widespread platforms with
        // 128 mod (cache line size) = 0 .
        pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}
  • poolLocalInternal         本地对象池
  • pad                              占位

poolLocalInternal

// Local per-P Pool appendix.
type poolLocalInternal struct {
        private interface{}   // Can be used only by the respective P.
        shared  []interface{} // Can be used by any P.
        Mutex                 // Protects shared.
}
  • private    私有对象池
  • shared    共享对象池
  • Mutex     对象池锁,主要是锁共享对象池

设计思想

对象池与P的关系
请看如下代码释义:

func (p *Pool) pinSlow() *poolLocal {
        // Retry under the mutex.
        // Can not lock the mutex while pinned.
        runtime_procUnpin()
        allPoolsMu.Lock()
        defer allPoolsMu.Unlock()
 //寻找新的P
        pid := runtime_procPin()
        // poolCleanup won't be called while we are pinned.
        s := p.localSize
        l := p.local
 //如果存在这个P的对象池则直接获取
        if uintptr(pid) < s {
                return indexLocal(l, pid)
        }
 //如果当前P的对象池不存在,加入到对象池集合中
        if p.local == nil {
                allPools = append(allPools, p)
        }
        // If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
 // 如果P数量在GC的时候发生了变化,Go会重新生成匹配P数量的对象池,并且丢弃旧的。
 //获取当前的P数量
        size := runtime.GOMAXPROCS(0)
 //创建P数量大小的对象池,并返回相应pid的对象池
        local := make([]poolLocal, size)
        atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-release
        atomic.StoreUintptr(&p.localSize, uintptr(size))         // store-release
        return &local[pid]
}

runtime_procPin方法实现

//go:nosplit
func procPin() int {
 //获取当前goroutine
        _g_ := getg()
 //获取执行goroutine的M
        mp := _g_.m

        mp.locks++
 //返回P
        return int(mp.p.ptr().id)
}

//go:linkname sync_runtime_procPin sync.runtime_procPin
//go:nosplit
func sync_runtime_procPin() int {
        return procPin()
}

从以上两段代码可以清楚的了解到sync.Pool的对象池是按照P进行分片,每个P都对应一个对象池,也就是poolLocal。如图:
对象池的实现原理分析_第1张图片

对象池中获取对象

Get函数源码释义

  • Get函数的逻辑流程如下:
    对象池的实现原理分析_第2张图片

源码释义如下:

// Get selects an arbitrary item from the Pool, removes it from the
// Pool, and returns it to the caller.
// Get may choose to ignore the pool and treat it as empty.
// Callers should not assume any relation between values passed to Put and
// the values returned by Get.
//
// If Get would otherwise return nil and p.New is non-nil, Get returns
// the result of calling p.New.
func (p *Pool) Get() interface{} {
        if race.Enabled {
                race.Disable()
        }
 //获取当前P对应的LocalPool
        l := p.pin()
 //获取当前P的私有对象池
        x := l.private
        l.private = nil
        runtime_procUnpin()
 //如果私有对象池没有可用的对象
        if x == nil {
                l.Lock()
  //从当前P的共享对象池尾部获取对象
                last := len(l.shared) - 1
                if last >= 0 {
                        x = l.shared[last]
                        l.shared = l.shared[:last]
                }
                l.Unlock()
  //如果共享对象池尾部也没有可用的对象
                if x == nil {
   //此处去别的P的共享对象池去偷对象
                        x = p.getSlow()
                }
        }
        if race.Enabled {
                race.Enable()
                if x != nil {
                        race.Acquire(poolRaceAddr(x))
                }
        }
 //如果所有对象池里都无法拿到可用的对象,只能新创建对象
        if x == nil && p.New != nil {
                x = p.New()
        }
        return x
}

// pin pins the current goroutine to P, disables preemption and returns poolLocal pool for the P.
// Caller must call runtime_procUnpin() when done with the pool.

// pin方法主要是获取`PoolLocal`,当全局`sync.Pool`对象里没有对应P的`PoolLocal`时,触发`Pool.local`的重建,丢弃旧的。
func (p *Pool) pin() *poolLocal {
        pid := runtime_procPin()
        // In pinSlow we store to localSize and then to local, here we load in opposite order.
        // Since we've disabled preemption, GC cannot happen in between.
        // Thus here we must observe local at least as large localSize.
        // We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
        s := atomic.LoadUintptr(&p.localSize) // load-acquire
        l := p.local                          // load-consume
        if uintptr(pid) < s {
                return indexLocal(l, pid)
        }
        return p.pinSlow()
}

//getSlow方法的职责是任意`P`上找到可用的对象
func (p *Pool) getSlow() (x interface{}) {
        // See the comment in pin regarding ordering of the loads.
 //计算当前LocalPool的大小
        size := atomic.LoadUintptr(&p.localSize) // load-acquire
        local := p.local                         // load-consume
        // Try to steal one element from other procs.
 //获取当前P的id
        pid := runtime_procPin()
        runtime_procUnpin()
 //循环遍历所有P的LocalPool,从shared尾部获取可用对象
        for i := 0; i < int(size); i++ {
                l := indexLocal(local, (pid+i+1)%int(size))
                l.Lock()
                last := len(l.shared) - 1
                if last >= 0 {
                        x = l.shared[last]
                        l.shared = l.shared[:last]
                        l.Unlock()
                        break
                }
                l.Unlock()
        }
        return x
}

向对象池归还对象

  • Put函数的逻辑流程如下:
    对象池的实现原理分析_第3张图片
    源码释义如下:

// Put adds x to the pool.

// Put方法比较简单,通过找到一个合适的`PoolLocal`,然后把释放的对象优先给到`local.private`,如果`private`不空,则追加到`shared`的尾部
func (p *Pool) Put(x interface{}) {
        if x == nil {
                return
        }
        if race.Enabled {
                if fastrand()%4 == 0 {
                        // Randomly drop x on floor.
                        return
                }
                race.ReleaseMerge(poolRaceAddr(x))
                race.Disable()
        }
        l := p.pin()
        if l.private == nil {
                l.private = x
                x = nil
        }
        runtime_procUnpin()
        if x != nil {
                l.Lock()
                l.shared = append(l.shared, x)
                l.Unlock()
        }
        if race.Enabled {
                race.Enable()
        }
}

GC回收对象池

回收注册

对象池的回收是在GC的时候调用注册方法poolCleanup实现的,所以Go的sync.Pool所实现的对象池功能的生命周期是两次GC间隔时间。

func init() {
        runtime_registerPoolCleanup(poolCleanup)
}

回收实现


func poolCleanup() {
        // This function is called with the world stopped, at the beginning of a garbage collection.
        // It must not allocate and probably should not call any runtime functions.
        // Defensively zero out everything, 2 reasons:
        // 1. To prevent false retention of whole Pools.
        // 2. If GC happens while a goroutine works with l.shared in Put/Get,
        //    it will retain whole Pool. So next cycle memory consumption would be doubled.

 //遍历全局allPools,allPools的的元素是通过pinSlow方法里重建Pool时添加的
        for i, p := range allPools {
                allPools[i] = nil
                for i := 0; i < int(p.localSize); i++ {
                        l := indexLocal(p.local, i)
   //清空private
                        l.private = nil
   //清空shared
                        for j := range l.shared {
                                l.shared[j] = nil
                        }
                        l.shared = nil
                }
  //清空pool对象
                p.local = nil
                p.localSize = 0
        }
 //重置allPools全局对象
        allPools = []*Pool{}
}

var (
        allPoolsMu Mutex
        allPools   []*Pool
)

对象池的升级(go1.13)

结构的调整

Pool结构的改变

加入了两个新的属性,victim和victimeSize


type Pool struct {
        noCopy noCopy

        local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
        localSize uintptr        // size of the local array

        victim     unsafe.Pointer // local from previous cycle
        victimSize uintptr        // size of victims array

        // New optionally specifies a function to generate
        // a value when Get would otherwise return nil.
        // It may not be changed concurrently with calls to Get.
        New func() interface{}
}

poolLocalInternal结构的改变

// Local per-P Pool appendix.
type poolLocalInternal struct {
        private interface{} // Can be used only by the respective P.
        shared  poolChain   // Local P can pushHead/popHead; any P can popTail.
}

// poolChain is a dynamically-sized version of poolDequeue.
//
// This is implemented as a doubly-linked list queue of poolDequeues
// where each dequeue is double the size of the previous one. Once a
// dequeue fills up, this allocates a new one and only ever pushes to
// the latest dequeue. Pops happen from the other end of the list and
// once a dequeue is exhausted, it gets removed from the list.
type poolChain struct {
        // head is the poolDequeue to push to. This is only accessed
        // by the producer, so doesn't need to be synchronized.
        head *poolChainElt

        // tail is the poolDequeue to popTail from. This is accessed
        // by consumers, so reads and writes must be atomic.
        tail *poolChainElt
}

type poolChainElt struct {
        poolDequeue

        // next and prev link to the adjacent poolChainElts in this
        // poolChain.
        //
        // next is written atomically by the producer and read
        // atomically by the consumer. It only transitions from nil to
        // non-nil.
        //
        // prev is written atomically by the consumer and read
        // atomically by the producer. It only transitions from
        // non-nil to nil.
        next, prev *poolChainElt
}


// poolDequeue is a lock-free fixed-size single-producer,
// multi-consumer queue. The single producer can both push and pop
// from the head, and consumers can pop from the tail.
//
// It has the added feature that it nils out unused slots to avoid
// unnecessary retention of objects. This is important for sync.Pool,
// but not typically a property considered in the literature.
type poolDequeue struct {
        // headTail packs together a 32-bit head index and a 32-bit
        // tail index. Both are indexes into vals modulo len(vals)-1.
        //
        // tail = index of oldest data in queue
        // head = index of next slot to fill
        //
        // Slots in the range [tail, head) are owned by consumers.
        // A consumer continues to own a slot outside this range until
        // it nils the slot, at which point ownership passes to the
        // producer.
        //
        // The head index is stored in the most-significant bits so
        // that we can atomically add to it and the overflow is
        // harmless.
        headTail uint64

        // vals is a ring buffer of interface{} values stored in this
        // dequeue. The size of this must be a power of 2.
        //
        // vals[i].typ is nil if the slot is empty and non-nil
        // otherwise. A slot is still in use until *both* the tail
        // index has moved beyond it and typ has been set to nil. This
        // is set to nil atomically by the consumer and read
        // atomically by the producer.
        vals []eface
}

type eface struct {
        typ, val unsafe.Pointer
}

方法实现调整

Get的实现调整

Get方法中,从1.12版本中的从shared尾部获取对象x变成了从头部获取。

func (p *Pool) Get() interface{} {
        if race.Enabled {
                race.Disable()
        }
        l, pid := p.pin()
        x := l.private
        l.private = nil
        if x == nil {
                // Try to pop the head of the local shard. We prefer
                // the head over the tail for temporal locality of
                // reuse.
                x, _ = l.shared.popHead()
                if x == nil {
                        x = p.getSlow(pid)
                }
        }
        runtime_procUnpin()
        if race.Enabled {
                race.Enable()
                if x != nil {
                        race.Acquire(poolRaceAddr(x))
                }
        }
        if x == nil && p.New != nil {
                x = p.New()
        }
        return x
}

Put的实现调整

Put方法中,从1.12版本的把对象x放到shared尾部变成了放到了头部。


// Put adds x to the pool.
func (p *Pool) Put(x interface{}) {
        if x == nil {
                return
        }
        if race.Enabled {
                if fastrand()%4 == 0 {
                        // Randomly drop x on floor.
                        return
                }
                race.ReleaseMerge(poolRaceAddr(x))
                race.Disable()
        }
        l, _ := p.pin()
        if l.private == nil {
                l.private = x
                x = nil
        }
        if x != nil {
                l.shared.pushHead(x)
        }
        runtime_procUnpin()
        if race.Enabled {
                race.Enable()
        }
}

getSlow的实现调整

getSlow方法中,变化如下:

  • 1.12版本:遍历所有P对应的PoolLocal,并且从shared尾部获取对象
  • 1.13版本:遍历所有P对应的PoolLocal,并且从shared头部获取对象,如果无法获取,则找对应P的victim的private获取对象,如果无法获取,则从所有P对应的victim里的shared尾部获取对象。
func (p *Pool) getSlow(pid int) interface{} {
        // See the comment in pin regarding ordering of the loads.
        size := atomic.LoadUintptr(&p.localSize) // load-acquire
        locals := p.local                        // load-consume
        // Try to steal one element from other procs.
 //遍历所有localPool的shared获取可用对象
        for i := 0; i < int(size); i++ {
                l := indexLocal(locals, (pid+i+1)%int(size))
                if x, _ := l.shared.popTail(); x != nil {
                        return x
                }
        }

        // Try the victim cache. We do this after attempting to steal
        // from all primary caches because we want objects in the
        // victim cache to age out if at all possible.
        size = atomic.LoadUintptr(&p.victimSize)
        if uintptr(pid) >= size {
                return nil
        }

 //PoolLocal无法获取对象,从victim获取
        locals = p.victim
        l := indexLocal(locals, pid)
        if x := l.private; x != nil {
                l.private = nil
                return x
        }
 //遍历所有victim的shared获取可用对象
        for i := 0; i < int(size); i++ {
                l := indexLocal(locals, (pid+i)%int(size))
                if x, _ := l.shared.popTail(); x != nil {
                        return x
                }
        }

        // Mark the victim cache as empty for future gets don't bother
        // with it.
        atomic.StoreUintptr(&p.victimSize, 0)

        return nil
}

回收方法的调整

回收方法里对victim做了一些工作,将所有对象池分为新的和旧的,每一次GC的时候,先把旧的对象池集合的victim回收,将新的对象池集合的local赋值给victim,然后回收新的对象池集合的local,之后新的对象池集合赋值给旧对象池集合,旧对象池集合的victim将在下一次GC的时候被回收。


func poolCleanup() {
        // This function is called with the world stopped, at the beginning of a garbage collection.
        // It must not allocate and probably should not call any runtime functions.

        // Because the world is stopped, no pool user can be in a
        // pinned section (in effect, this has all Ps pinned).

        // Drop victim caches from all pools.
        for _, p := range oldPools {
                p.victim = nil
                p.victimSize = 0
        }

        // Move primary cache to victim cache.
        for _, p := range allPools {
                p.victim = p.local
                p.victimSize = p.localSize
                p.local = nil
                p.localSize = 0
        }

        // The pools with non-empty primary caches now have non-empty
        // victim caches and no pools have primary caches.
        oldPools, allPools = allPools, nil
}

var (
        allPoolsMu Mutex

        // allPools is the set of pools that have non-empty primary
        // caches. Protected by either 1) allPoolsMu and pinning or 2)
        // STW.
        allPools []*Pool

        // oldPools is the set of pools that may have non-empty victim
        // caches. Protected by STW.
        oldPools []*Pool
)

性能的提升

优化数据结构提升性能

先从下图了解下内部数据读取流程的改变:
对象池的实现原理分析_第4张图片

接下来我们分析一下上面的图,图中主要围绕了三种操作进行对比,这里我们做一个总结分析:

  • 在1.12版本中,无论是Get还是Put还是跨P偷,就得操作shared的尾部,我们知道每个shared其实是对所有协程都可见的,每次都得切割slice,slice并不是协程安全的,所以这里需要去加锁,所以会有性能损耗。
  • 在1.13版本中,将Get和Put与跨P偷做了隔离,shared使用了无锁双向链表实现,当协程去对应的PoolLocal去获取对象的时候,其实是先从shared双向链表的头部去获取,Put操作也是一样,所以性能得到了提升。

增加对象复用周期提升性能

  • 在1.12版本中,GC回收所有的对象池集合的时候,会将所有的local全部重置回收,对象复用的周期只有一个GC间隔时间。
  • 在1.13版本中,GC回收将所有对象池分为新的和旧的,每一次GC的时候,先把旧的对象池集合的victim回收,将新的对象池集合的local赋值给victim,然后回收新的对象池集合的local,之后新的对象池集合赋值给旧对象池集合,旧对象池集合的victim将在下一次GC的时候被回收,这里将次轮GC前积累的对象带到下轮GC再回收,再下轮GC之前,如果local没有可用对象的话,依然可以去victim里去获取,victim的设计将对象池的复用周期扩大了一个GC间隔时间。

参考资料

【1】 https://mp.weixin.qq.com/s/pMooZiba5VzbILr4OYlYzA

你可能感兴趣的:(go)