win10安装pytorch1.5教程

此时你已经安装了annaconda,首先创造一个pytorch环境

conda create -n pytorch1.5 python=3.7

再激活pytorch1.4环境

conda activate pytorch1.4

进入pytorch官网,https://pytorch.org/get-started/locally/

win10安装pytorch1.5教程_第1张图片
根据自己的cuda版本选择,
win10安装pytorch1.5教程_第2张图片

conda install pytorch torchvision cudatoolkit=10.1 -c pytorch

但是这里一定要注意,去掉-c pytorch,安装的时候才会默认从清华源下载相应的包,因此这里用命令行:

conda install pytorch torchvision cudatoolkit=10.1

如果不能安装,那说明清华源还没有这些包,那就执行上个代码操作。
安装好后测试代码

import torch
print(torch.__version__)
import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = Net()
print(net)

有输出就安装完成了

你可能感兴趣的:(深度学习)