《算法与数据结构》学习笔记16---散列表(2)

前言

    散列表续集。
    散列表的查询效率并不能笼统地说成是 O(1)。它跟散列函数、装载因子、散列冲突等都有关系。如果散列函数设计得不好,或者装载因子过高,都可能导致散列冲突发生的概率升高,查询效率下降。
    在极端情况下,有些恶意的攻击者,还有可能通过精心构造的数据,使得所有的数据经过散列函数之后,都散列到同一个槽里。如果使用的是基于链表的冲突解决方法,那这个时候,散列表就会退化为链表,查询的时间复杂度就从 O(1) 急剧退化为 O(n)。
    如果散列表中有 10 万个数据,退化后的散列表查询的效率就下降了 10 万倍。更直接点说,如果之前运行 100 次查询只需要 0.1 秒,那现在就需要 1 万秒。这样就有可能因为查询操作消耗大量 CPU 或者线程资源,导致系统无法响应其他请求,从而达到拒绝服务攻击(DoS)的目的。这也就是散列表碰撞攻击的基本原理。

正文

如何设计散列函数?
    散列函数设计的好坏,决定了散列表冲突的概率大小,也直接决定了散列表的性能。那什么才是好的散列函数呢?

  • 散列函数的设计不能太复杂。过于复杂的散列函数,势必会消耗很多计算时间,也就间接的影响到散列表的性能。
  • 散列函数生成的值要尽可能随机并且均匀分布。这样才能避免或者最小化散列冲突,而且即便出现冲突,散列到每个槽里的数据也会比较平均,不会出现某个槽内数据特别多的情况。

    实际工作中,我们还需要综合考虑各种因素。这些因素有关键字的长度、特点、分布、还有散列表的大小等。
    常用简单的散列函数的设计方法:

  1. 第一个例子就是上一篇的学生运动会的例子,通过分析参赛编号的特征,把编号中的后两位作为散列值。还可以用类似的散列函数处理手机号码,因为手机号码前几位重复的可能性很大,但是后面几位就比较随机,可以取手机号的后四位作为散列值。这种散列函数的设计方法,一般叫作“数据分析法”。
  2. 第二个例子就是上一篇的思考题,如何实现 Word 拼写检查功能。这里面的散列函数,就可以这样设计:将单词中每个字母的ASCll 码值“进位”相加,然后再跟散列表的大小求余、取模,作为散列值。比如,英文单词 nice,转化出来的散列值就是下面这样:
hash("nice")=(("n" - "a") * 26*26*26 + ("i" - "a")*26*26 + ("c" - "a")*26+ ("e"-"a")) / 78978

    实际上,散列函数的设计方法还有很多,比如直接寻址法、平方取中法、折叠法、随机数法等,这些你只要了解就行了,不需要全都掌握。

装载因子过大了怎么办?
    装载因子越大,说明散列表中的元素越多,空闲位置越少,散列冲突的概率就越大。不仅插入数据的过程要多次寻址或者拉很长的链,查找的过程也会因此变得很慢。
    对于没有频繁插入和删除的静态数据集合来说,很容易根据数据的特点、分布等,设计出完美的、极少冲突的散列函数,因为毕竟之前数据都是已知的。
    对于动态散列表来说,数据集合是频繁变动的,事先无法预估将要加入的数据个数,所以也无法事先申请一个足够大的散列表。随着数据慢慢加入,装载因子就会慢慢变大。当装载因子大到一定程度之后,散列冲突就会变得不可接受。

    针对动态散列表,该如何处理呢?
    针对散列表,当装载因子过大时,可以进行动态扩容,重新申请一个更大的散列表,将数据搬移到这个新散列表中。假设每次扩容都申请一个原来散列表大小两倍的空间。如果原来散列表的装载因子是 0.8,那经过扩容之后,新散列表的装载因子就下降为原来的一半,变成了 0.4。
    针对数组的扩容,数据搬移操作比较简单。但是,针对散列表的扩容,数据搬移操作要复杂很多。因为散列表的大小变了,数据的存储位置也变了,所以我们需要通过散列函数重新计算每个数据的存储位置。
    对于支持动态扩容的散列表,插入一个数据,最好情况下,不需要扩容,最好时间复杂度是 O(1)。最坏情况下,散列表装载因子过高,启动扩容,我们需要重新申请内存空间,重新计算哈希位置,并且搬移数据,所以时间复杂度是 O(n)。用摊还分析法,均摊情况下,时间复杂度接近最好情况,就是 O(1)。
    实际上,对于动态散列表,随着数据的删除,散列表中的数据会越来越少,空闲空间会越来越多。如果我们对空间消耗非常敏感,我们可以在装载因子小于某个值之后,启动动态缩容。当然,如果我们更加在意执行效率,能够容忍多消耗一点内存空间,那就可以不用费劲来缩容了。
    当散列表的装载因子超过某个阈值时,就需要进行扩容。装载因子阈值需要选择得当。如果太大,会导致冲突过多;如果太小,会导致内存浪费严重。装载因子阈值的设置要权衡时间、空间复杂度。如果内存空间不紧张,对执行效率要求很高,可以降低负载因子的阈值;相反,如果内存空间紧张,对执行效率要求又不高,可以增加负载因子的值,甚至可以大于 1。

如何以免低效地扩容?
    大部分情况下,动态扩容的散列表插入一个数据都很快,但是在特殊情况下,当装载因子已经到达阈值,需要先进行扩容,再插入数据。这个时候,插入数据就会变得很慢,甚至会无法接受。
    举一个极端的例子,如果散列表当前大小为 1GB,要想扩容为原来的两倍大小,那就需要对 1GB 的数据重新计算哈希值,并且从原来的散列表搬移到新的散列表,听起来就很耗时,是不是?
    如果业务代码直接服务于用户,尽管大部分情况下,插入一个数据的操作都很快,但是,极个别非常慢的插入操作,也会让用户崩溃。这个时候,“一次性”扩容的机制就不合适了。
    为了解决一次性扩容耗时过多的情况,可以将扩容操作穿插在插入操作的过程中,分批完成。当装载因子触达阈值之后,我们只申请新空间,但并不将老的数据搬移到新散列表中。每次插入一个数据到散列表,我们都重复上面的过程。经过多次插入操作之后,老的散列表中的数据就一点一点全部搬移到新散列表中了。这样没有了集中的一次性数据搬移,插入操作就都变得很快了。
    这期间的查询操作怎么来做呢?对于查询操作,为了兼容了新、老散列表中的数据,先从新散列表中查找,如果没有找到,再去老的散列表中查找。
    通过这样均摊的方法,将一次性扩容的代价,均摊到多次插入操作中,就避免了一次性扩容耗时过多的情况。这种实现方式,任何情况下,插入一个数据的时间复杂度都是 O(1)。

*如何选择冲突解决方法?
    开放寻址法和链表法这两种冲突解决办法在实际的软件开发中都非常常用。比如,Java 中 LinkedHashMap 就采用了链表法解决冲突,ThreadLocalMap 是通过线性探测的开放寻址法来解决冲突。

  1. 开放寻址法
  • 优点:开放寻址法不像链表法,需要拉很多链表。散列表中的数据都存储在数组中,可以有效地利用 CPU 缓存加快查询速度。而且,这种方法实现的散列表,序列化起来比较简单。链表法包含指针,序列化起来就没那么容易。
  • 缺点:用开放寻址法解决冲突的散列表,删除数据的时候比较麻烦,需要特殊标记已经删除掉的数据。而且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表法来说,冲突的代价更高。并且,在开放寻址法中,所有的数据都存储在一个数组中,比起链表法来说,冲突的代价更高。这也导致这种方法比链表法更浪费内存空间。
  • 故,当数据量比较小、装载因子小的时候,适合采用开放寻址法。这也是JAVA中的ThreadLocalMap使用开放建起法解决散列冲突的原因。
  1. 链表法
  • 优点:首先,链表法对内存的利用率比开放寻址法要高。因为链表结点可以在需要的时候再创建,并不需要像开放寻址法那样事先申请好。链表法比起开放寻址法,对大装载因子的容忍度更高。开放寻址法只能适用装载因子小于 1 的情况。接近 1 时,就可能会有大量的散列冲突,导致大量的探测、再散列等,性能会下降很多。但是对于链表法来说,只要散列函数的值随机均匀,即便装载因子变成 10,也就是链表的长度变长了而已,虽然查找效率有所下降,但是比起顺序查找还是快很多。
  • 缺点:链表因为要存储指针,所以对于比较小的对象的存储,是比较消耗内存的,还有可能会让内存的消耗翻倍。而且,因为链表中的结点是零散分布在内存中的,不是连续的,所以对 CPU 缓存是不友好的,这方面对于执行效率也有一定的影响。
  • 故,当然,如果存储的是大对象,也就是说要存储的对象的大小远远大于一个指针的大小(4 个字节或者 8 个字节),那链表中指针的内存消耗在大对象面前就可以忽略了。

    实际上,对链表法稍加改造,可以实现一个更加高效的散列表。将链表法中的链表改造为其他高效的动态数据结构,比如跳表、红黑树。这样,即便出现散列冲突,极端情况下,所有的数据都散列到同一个桶内,那最终退化成的散列表的查找时间也只不过是 O(logn)。这样也就有效避免了前面讲到的散列碰撞攻击。
    所以,基于链表的散列冲突处理方法比较适合存储大对象、大数据量的散列表,而且,比起开放寻址法,它更加灵活,支持更多的优化策略,比如用红黑树代替链表。

--------------------------------------------------------------------------------------------------------------------

工业级散列表举例分析
Java中的HashMap

  1. 初始大小
    HashMap 默认的初始大小是 16,当然这个默认值是可以设置的,如果事先知道大概的数据量有多大,可以通过修改默认初始大小,减少动态扩容的次数,这样会大大提高 HashMap 的性能。
  2. 装载因子和动态扩容
    最大装载因子默认是 0.75,当 HashMap 中元素个数超过 0.75*capacity(capacity 表示散列表的容量)的时候,就会启动扩容,每次扩容都会扩容为原来的两倍大小。
  3. 散列冲突解决方法
    于是,在 JDK1.8 版本中,为了对 HashMap 做进一步优化,引入了红黑树。而当链表长度太长(默认超过 8)时,链表就转换为红黑树。可以利用红黑树快速增删改查的特点,提高 HashMap 的性能。当红黑树结点个数少于 8 个的时候,又会将红黑树转化为链表。因为在数据量较小的情况下,红黑树要维护平衡,比起链表来,性能上的优势并不明显。
  4. 散列函数
int hash(Object key) {
    int h = key.hashCode()return (h ^ (h >>> 16)) & (capitity -1); //capicity 表示散列表的大小
}

其中,hashCode() 返回的是 Java 对象的 hash code。

你可能感兴趣的:(数据结构与算法)