sklearn练习

sklearn练习_第1张图片

sklearn练习_第2张图片

Code


import numpy as np
from sklearn import metrics
from sklearn import datasets
from sklearn.model_selection import KFold
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

data = datasets.make_classification(n_samples=2000, n_features=10)
kf=KFold(n_splits=10)
for tr_ind,te_ind in kf.split(data[0]):
    X_tr=data[0][tr_ind]
    X_te=data[0][te_ind]
    Y_tr=data[1][tr_ind]
    Y_te=data[1][te_ind]
    clfs = [GaussianNB(),SVC(C=0.1, kernel='rbf', gamma=0.1),RandomForestClassifier(n_estimators=100)]
    for clf in clfs:
        clf.fit(X_tr, Y_tr)
        pred = clf.predict(X_te)
        print(str(clf))
        print("Accuracy: ", metrics.accuracy_score(Y_te, pred))
        print("F1-score: ", metrics.f1_score(Y_te, pred))
        print("AUC ROC ", metrics.roc_auc_score(Y_te, pred),"\n")



Some Result

sklearn练习_第3张图片

sklearn练习_第4张图片

你可能感兴趣的:(sklearn练习)