基于 kears的全卷积网络u-net端到端医学图像多类型图像分割(二)

文章目录

        • 1. 端到端的图像分割网络
        • 2. 数据准备
        • 3. 训练
        • 4. 结果
        • 5.多分类
        • 6.其它相关

1. 端到端的图像分割网络

首先,回顾下网络模型

def get_unet(pretrained_weights=None):
    inputs = Input((img_rows, img_cols, 1))
    conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
    conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)

    conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool1)
    conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)

    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool2)
    conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)

    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(pool3)
    conv4 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)

    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(pool4)
    conv5 = Conv2D(512, (3, 3), activation='relu', padding='same')(conv5)

    up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)
    conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)

    up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(up7)
    conv7 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv7)

    up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
    conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(up8)
    conv8 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv8)

    up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
    conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(up9)
    conv9 = Conv2D(32, (3, 3), activation='relu', padding='same')(conv9)

    conv10 = Conv2D(1, (1, 1), activation='sigmoid')(conv9)

    model = Model(inputs=[inputs], outputs=[conv10])

    model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])

    if (pretrained_weights):
        model.load_weights(pretrained_weights)

    return model
  • 比较重要的是定义loss function 我们使用dice loss,主要思路就是求图像重合部分占比。相关代码如下:
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)


def dice_coef_loss(y_true, y_pred):
    return -dice_coef(y_true, y_pred)

2. 数据准备

由于是端到端的训练,我们的数据其实并没有经过太多处理,将mask和原图分别放到np array中即可。以下代码段展示training data的准备方式,test data 基本类似。

data_path = 'data/' #设置路径
image_rows = 256
image_cols = 256
def create_train_data():
    train_data_path = os.path.join(data_path, 'train/Image') #训练文件路径
    train_data_Label_path = os.path.join(data_path, 'train/Label') #mask文件路径
    images = os.listdir(train_data_path)
    total = len(images)
    imgs = np.ndarray((total, image_rows, image_cols), dtype=np.uint8)
    imgs_mask = np.ndarray((total, image_rows, image_cols), dtype=np.uint8)
    i = 0
    print('Creating training images...')
    for image_name in images:
        img = imread(os.path.join(train_data_path, image_name), as_grey=True)
        img_mask = imread(os.path.join(train_data_Label_path, image_name), as_grey=True)
        img = np.array([img])
        img_mask = np.array([img_mask])
        imgs[i] = img
        imgs_mask[i] = img_mask
        if i % 100 == 0:
            print('Done: {0}/{1} images'.format(i, total))
        i += 1
    print('Loading done.')
    np.save('imgs_train.npy', imgs)
    np.save('imgs_mask_train.npy', imgs_mask)
    print('Saving to .npy files done.')

3. 训练

训练前,要先对相关数据归一化,对于训练数据,我们先求均值,与标准差,原始值与均值做差,再除以均值。

    imgs_train = imgs_train.astype('float32')
    mean = np.mean(imgs_train)  # mean for data centering
    std = np.std(imgs_train)  # std for data normalization
    imgs_train -= mean
    imgs_train /= std

对于mask数据,直接除以通道最大值255即可。

    imgs_mask_train = imgs_mask_train.astype('float32')
    imgs_mask_train /= 255.  # scale masks to [0, 1]

设置相关参数,开始训练:

    model.fit(imgs_train, imgs_mask_train, batch_size=16, nb_epoch=20, verbose=1, shuffle=True,
              validation_split=0.2,
              callbacks=[model_checkpoint])

4. 结果

经过大约200 epoch 的训练,我们的结果如下图(从左至右依次为原始图,手工标注图,算法分割图):
基于 kears的全卷积网络u-net端到端医学图像多类型图像分割(二)_第1张图片
最终的dice_coef 在0.7左右。

5.多分类

可以看到最终的结果是3分类的,但训练过程中发现,网络结果仍旧是二分类,因此,我们仍旧需要针对不同分类训练多个二分类模型,在预测时,先做多个二分类,再对数据进行相关融合,得到最终结果。相关预测及合并代码如下:

    imgs_mask_test = model.predict(imgs_test, verbose=1)
    imgs_mask_test_t = modelt.predict(imgs_test, verbose=1)
    pred_dir = 'preds_a'
    if not os.path.exists(pred_dir):
        os.mkdir(pred_dir)
    for image,image_t,image_id in zip(imgs_mask_test,imgs_mask_test_t ,imgs_id_test):
        image = (image[:, :, 0] * 128.).astype(np.uint8)
        image_t = (image_t[:, :, 0] * 255.).astype(np.uint8)
        image[image_t>200]=255
        imsave(os.path.join(pred_dir, str(image_id) + '_pred.png'), image)

6.其它相关

二分类源代码及已上传至github keras-u-net 多分类,由于大家数据不同,分类类别不同,暂时没有更新相关代码。欢迎交流。

  • 注:由于相关训练数据不便提供,所以相关数据文件没有上传。

你可能感兴趣的:(python)