运行结果:

【code】
#include
#include
#include
#include
#include
#define MAX_STRING 100
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define MAX_SENTENCE_LENGTH 1000
#define MAX_CODE_LENGTH 40
#include
#define posix_memalign(p, a, s) (((*(p)) = _aligned_malloc((s), (a))), *(p) ?0 :errno)
const int vocab_hash_size = 30;
typedef float real;
struct vocab_word {
long long cn;
int *point;
char *word, *code, codelen;
};
char train_file[MAX_STRING], output_file[MAX_STRING];
char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING];
struct vocab_word *vocab;
int binary = 0, cbow = 1, debug_mode = 2, window = 5, min_count = 1, num_threads = 1, min_reduce = 1;
int *vocab_hash;
long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 10;
long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0, classes = 0;
real alpha = 0.025, starting_alpha, sample = 1e-3;
real *syn0, *syn1, *syn1neg, *expTable;
clock_t start;
int hs = 0, negative = 5;
const int table_size = 1e2;
int *table;
void InitUnigramTable() {
int a, i;
long long train_words_pow = 0;
real d1, power = 0.75;
table = (int *) malloc(table_size * sizeof(int));
for (a = 0; a < vocab_size; a++)
train_words_pow += pow(vocab[a].cn, power);
i = 0;
d1 = pow(vocab[i].cn, power) / (real) train_words_pow;
printf("\ntable_size:%d", table_size);
printf("\ntrain_words_pow:%lld,d1:%f\n", train_words_pow, d1);
for (a = 0; a < table_size; a++) {
table[a] = i;
if (a / (real) table_size > d1) {
i++;
d1 += pow(vocab[i].cn, power) / (real) train_words_pow;
}
if (i >= vocab_size)
i = vocab_size - 1;
}
for (a = 0; a < table_size; a++) {
printf("\t%d", table[a]);
if ((a + 1) % 10 == 0) {
printf("\n");
}
}
}
void ReadWord(char *word, FILE *fin) {
int a = 0, ch;
while (!feof(fin)) {
ch = fgetc(fin);
if (ch == 13)
continue;
if ((ch == ' ') || (ch == '\t') || (ch == '\n')) {
if (a > 0) {
if (ch == '\n')
ungetc(ch, fin);
break;
}
if (ch == '\n') {
strcpy(word, (char *) "");
return;
} else
continue;
}
word[a] = ch;
a++;
if (a >= MAX_STRING - 1)
a--;
}
word[a] = 0;
}
int GetWordHash(char *word) {
unsigned long long a, hash = 0;
for (a = 0; a < strlen(word); a++)
hash = hash * 257 + word[a];
hash = hash % vocab_hash_size;
return hash;
}
int SearchVocab(char *word) {
unsigned int hash = GetWordHash(word);
while (1) {
if (vocab_hash[hash] == -1)
return -1;
if (!strcmp(word, vocab[vocab_hash[hash]].word))
return vocab_hash[hash];
hash = (hash + 1) % vocab_hash_size;
}
return -1;
}
int ReadWordIndex(FILE *fin) {
char word[MAX_STRING];
ReadWord(word, fin);
if (feof(fin))
return -1;
return SearchVocab(word);
}
int AddWordToVocab(char *word) {
unsigned int hash, length = strlen(word) + 1;
if (length > MAX_STRING)
length = MAX_STRING;
vocab[vocab_size].word = (char *) calloc(length, sizeof(char));
strcpy(vocab[vocab_size].word, word);
vocab[vocab_size].cn = 0;
vocab_size++;
if (vocab_size + 2 >= vocab_max_size) {
vocab_max_size += 1000;
vocab = (struct vocab_word *) realloc(vocab, vocab_max_size * sizeof(struct vocab_word));
}
hash = GetWordHash(word);
while (vocab_hash[hash] != -1)
hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = vocab_size - 1;
return vocab_size - 1;
}
int VocabCompare(const void *a, const void *b) {
return ((struct vocab_word *) b)->cn - ((struct vocab_word *) a)->cn;
}
void SortVocab() {
int a, size;
unsigned int hash;
qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);
for (a = 0; a < vocab_hash_size; a++)
vocab_hash[a] = -1;
size = vocab_size;
train_words = 0;
for (a = 0; a < size; a++) {
if ((vocab[a].cn < min_count) && (a != 0)) {
vocab_size--;
free(vocab[a].word);
} else {
hash = GetWordHash(vocab[a].word);
while (vocab_hash[hash] != -1)
hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = a;
train_words += vocab[a].cn;
}
}
vocab = (struct vocab_word *) realloc(vocab, (vocab_size + 1) * sizeof(struct vocab_word));
for (a = 0; a < vocab_size; a++) {
vocab[a].code = (char *) calloc(MAX_CODE_LENGTH, sizeof(char));
vocab[a].point = (int *) calloc(MAX_CODE_LENGTH, sizeof(int));
}
}
void ReduceVocab() {
int a, b = 0;
unsigned int hash;
for (a = 0; a < vocab_size; a++)
if (vocab[a].cn > min_reduce) {
vocab[b].cn = vocab[a].cn;
vocab[b].word = vocab[a].word;
b++;
} else
free(vocab[a].word);
vocab_size = b;
for (a = 0; a < vocab_hash_size; a++)
vocab_hash[a] = -1;
for (a = 0; a < vocab_size; a++) {
hash = GetWordHash(vocab[a].word);
while (vocab_hash[hash] != -1)
hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = a;
}
fflush(stdout);
min_reduce++;
}
void CreateBinaryTree() {
long long a, b, i, min1i, min2i, pos1, pos2;
long long point[MAX_CODE_LENGTH];
char code[MAX_CODE_LENGTH];
long long *count = (long long *) calloc(vocab_size * 2 + 1, sizeof(long long));
long long *binary = (long long *) calloc(vocab_size * 2 + 1, sizeof(long long));
long long *parent_node = (long long *) calloc(vocab_size * 2 + 1, sizeof(long long));
for (a = 0; a < vocab_size; a++)
count[a] = vocab[a].cn;
for (a = vocab_size; a < vocab_size * 2; a++)
count[a] = 1e15;
pos1 = vocab_size - 1;
pos2 = vocab_size;
for (a = 0; a < vocab_size - 1; a++) {
if (pos1 >= 0) {
if (count[pos1] < count[pos2]) {
min1i = pos1;
pos1--;
} else {
min1i = pos2;
pos2++;
}
} else {
min1i = pos2;
pos2++;
}
if (pos1 >= 0) {
if (count[pos1] < count[pos2]) {
min2i = pos1;
pos1--;
} else {
min2i = pos2;
pos2++;
}
} else {
min2i = pos2;
pos2++;
}
count[vocab_size + a] = count[min1i] + count[min2i];
parent_node[min1i] = vocab_size + a;
parent_node[min2i] = vocab_size + a;
binary[min2i] = 1;
}
for (int ii = 0; ii < 2 * vocab_size + 1; ii++) {
printf("%d\t", ii);
}
printf("\n");
for (int ii = 0; ii < 2 * vocab_size + 1; ii++) {
printf("%d\t", count[ii]);
}
printf("\n");
for (int ii = 0; ii < 2 * vocab_size + 1; ii++) {
printf("%d\t", binary[ii]);
}
printf("\n");
for (int ii = 0; ii < 2 * vocab_size + 1; ii++) {
printf("%d\t", parent_node[ii]);
}
printf("\n");
printf("\n");
for (a = 0; a < vocab_size; a++) {
b = a;
i = 0;
while (1) {
code[i] = binary[b];
point[i] = b;
i++;
b = parent_node[b];
if (b == vocab_size * 2 - 2)
break;
}
vocab[a].codelen = i;
vocab[a].point[0] = vocab_size - 2;
for (b = 0; b < i; b++) {
vocab[a].code[i - b - 1] = code[b];
vocab[a].point[i - b] = point[b] - vocab_size;
}
}
printf("vocab_size:%d\n", vocab_size);
for (b = 0; b < vocab_size; b++) {
vocab_word temp = vocab[b];
printf("%s\t", temp.word);
int codeLen = temp.codelen;
printf("%d\t(\t", codeLen);
for (int a = 0; a < codeLen; a++) {
printf("%d\t", temp.code[a]);
}
printf(")\t\t\t\t\t\t");
printf("point:(\t");
for (int a = 0; a < codeLen; a++) {
printf("%d\t", temp.point[a]);
}
printf(")\n");
}
free(count);
free(binary);
free(parent_node);
}
void LearnVocabFromTrainFile() {
char word[MAX_STRING];
FILE *fin;
long long a, i;
for (a = 0; a < vocab_hash_size; a++)
vocab_hash[a] = -1;
fin = fopen(train_file, "rb");
if (fin == NULL) {
printf("ERROR: training data file not found!\n");
exit(1);
}
vocab_size = 0;
AddWordToVocab((char *) "");
while (1) {
ReadWord(word, fin);
if (feof(fin))
break;
train_words++;
if ((debug_mode > 1) && (train_words % 100000 == 0)) {
printf("%lldK%c", train_words / 1000, 13);
fflush(stdout);
}
i = SearchVocab(word);
if (i == -1) {
a = AddWordToVocab(word);
vocab[a].cn = 1;
} else
vocab[i].cn++;
if (vocab_size > vocab_hash_size * 0.7)
ReduceVocab();
}
SortVocab();
if (debug_mode > 0) {
printf("Vocab size: %lld\n", vocab_size);
printf("Words in train file: %lld\n", train_words);
}
file_size = ftell(fin);
fclose(fin);
}
void SaveVocab() {
long long i;
FILE *fo = fopen(save_vocab_file, "wb");
for (i = 0; i < vocab_size; i++)
fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn);
fclose(fo);
}
void ReadVocab() {
long long a, i = 0;
char c;
char word[MAX_STRING];
FILE *fin = fopen(read_vocab_file, "rb");
if (fin == NULL) {
printf("Vocabulary file not found\n");
exit(1);
}
for (a = 0; a < vocab_hash_size; a++)
vocab_hash[a] = -1;
vocab_size = 0;
while (1) {
ReadWord(word, fin);
if (feof(fin))
break;
a = AddWordToVocab(word);
fscanf(fin, "%lld%c", &vocab[a].cn, &c);
i++;
}
SortVocab();
if (debug_mode > 0) {
printf("Vocab size: %lld\n", vocab_size);
printf("Words in train file: %lld\n", train_words);
}
fin = fopen(train_file, "rb");
if (fin == NULL) {
printf("ERROR: training data file not found!\n");
exit(1);
}
fseek(fin, 0, SEEK_END);
file_size = ftell(fin);
fclose(fin);
}
void InitNet() {
long long a, b;
unsigned long long next_random = 1;
a = posix_memalign((void ** )&syn0, 128,
(long long )vocab_size * layer1_size * sizeof(real));
if (syn0 == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
if (hs) {
a = posix_memalign((void ** )&syn1, 128,
(long long )vocab_size * layer1_size * sizeof(real));
if (syn1 == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
for (a = 0; a < vocab_size; a++)
for (b = 0; b < layer1_size; b++)
syn1[a * layer1_size + b] = 0;
}
if (negative > 0) {
a = posix_memalign((void ** )&syn1neg, 128,
(long long )vocab_size * layer1_size * sizeof(real));
if (syn1neg == NULL) {
printf("Memory allocation failed\n");
exit(1);
}
for (a = 0; a < vocab_size; a++)
for (b = 0; b < layer1_size; b++)
syn1neg[a * layer1_size + b] = 0;
}
for (a = 0; a < vocab_size; a++)
for (b = 0; b < layer1_size; b++) {
next_random = next_random * (unsigned long long) 25214903917 + 11;
syn0[a * layer1_size + b] = (((next_random & 0xFFFF) / (real) 65536)
- 0.5) / layer1_size;
}
CreateBinaryTree();
}
void *TrainModelThread(void *id) {
long long a, b, d;
long long cw;
long long word, last_word, sentence_length = 0, sentence_position = 0;
long long word_count = 0, last_word_count = 0;
long long sen[MAX_SENTENCE_LENGTH + 1];
long long l1, l2, c, target, label, local_iter = iter;
unsigned long long next_random = (long long) id;
real f, g;
clock_t now;
real *neu1 = (real *) calloc(layer1_size, sizeof(real));
real *neu1e = (real *) calloc(layer1_size, sizeof(real));
FILE *fi = fopen(train_file, "rb");
fseek(fi, file_size / (long long) num_threads * (long long) id, SEEK_SET);
while (1) {
if (word_count - last_word_count > 10) {
word_count_actual += word_count - last_word_count;
last_word_count = word_count;
if ((debug_mode > 1)) {
now = clock();
printf( "%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ",
13, alpha, word_count_actual / (real) (iter * train_words + 1) * 100,
word_count_actual / ((real) (now - start + 1) / (real) CLOCKS_PER_SEC * 1000));
fflush(stdout);
}
alpha = starting_alpha * (1 - word_count_actual / (real) (iter * train_words + 1));
if (alpha < starting_alpha * 0.0001)
alpha = starting_alpha * 0.0001;
}
if (sentence_length == 0) {
while (1) {
word = ReadWordIndex(fi);
if (feof(fi))
break;
if (word == -1)
continue;
word_count++;
if (word == 0)
break;
if (sample > 0) {
real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn;
next_random = next_random * (unsigned long long) 25214903917 + 11;
if (ran < (next_random & 0xFFFF) / (real) 65536)
continue;
}
sen[sentence_length] = word;
sentence_length++;
if (sentence_length >= MAX_SENTENCE_LENGTH)
break;
}
sentence_position = 0;
}
if (feof(fi) || (word_count > train_words / num_threads)) {
word_count_actual += word_count - last_word_count;
local_iter--;
if (local_iter == 0)
break;
word_count = 0;
last_word_count = 0;
sentence_length = 0;
fseek(fi, file_size / (long long) num_threads * (long long) id, SEEK_SET);
continue;
}
word = sen[sentence_position];
if (word == -1)
continue;
for (c = 0; c < layer1_size; c++)
neu1[c] = 0;
for (c = 0; c < layer1_size; c++)
neu1e[c] = 0;
next_random = next_random * (unsigned long long) 25214903917 + 11;
b = next_random % window;
if (cbow) {
cw = 0;
for (a = b; a < window * 2 + 1 - b; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
for (c = 0; c < layer1_size; c++)
neu1[c] += syn0[c + last_word * layer1_size];
cw++;
}
if (cw) {
for (c = 0; c < layer1_size; c++)
neu1[c] /= cw;
if (hs)
for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * layer1_size;
for (c = 0; c < layer1_size; c++)
f += neu1[c] * syn1[c + l2];
if (f <= -MAX_EXP)
continue;
else if (f >= MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
g = (1 - vocab[word].code[d] - f) * alpha;
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1[c + l2];
for (c = 0; c < layer1_size; c++)
syn1[c + l2] += g * neu1[c];
}
if (negative > 0)
for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random * (unsigned long long) 25214903917 + 11;
target = table[(next_random >> 16) % table_size];
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++)
f += neu1[c] * syn1neg[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else
g = (label - expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++)
syn1neg[c + l2] += g * neu1[c];
}
for (a = b; a < window * 2 + 1 - b; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
for (c = 0; c < layer1_size; c++)
syn0[c + last_word * layer1_size] += neu1e[c];
}
}
}
else {
for (a = b; a < window * 2 + 1 - b; a++)
if (a != window) {
c = sentence_position - window + a;
if (c < 0)
continue;
if (c >= sentence_length)
continue;
last_word = sen[c];
if (last_word == -1)
continue;
l1 = last_word * layer1_size;
for (c = 0; c < layer1_size; c++)
neu1e[c] = 0;
if (hs)
for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * layer1_size;
for (c = 0; c < layer1_size; c++)
f += syn0[c + l1] * syn1[c + l2];
if (f <= -MAX_EXP)
continue;
else if (f >= MAX_EXP)
continue;
else
f = expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
g = (1 - vocab[word].code[d] - f) * alpha;
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1[c + l2];
for (c = 0; c < layer1_size; c++)
syn1[c + l2] += g * syn0[c + l1];
}
if (negative > 0)
for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random * (unsigned long long) 25214903917 + 11;
target = table[(next_random >> 16) % table_size];
if (target == 0)
target = next_random % (vocab_size - 1) + 1;
if (target == word)
continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++)
f += syn0[c + l1] * syn1neg[c + l2];
if (f > MAX_EXP)
g = (label - 1) * alpha;
else if (f < -MAX_EXP)
g = (label - 0) * alpha;
else
g = (label - expTable[(int) ((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
for (c = 0; c < layer1_size; c++)
neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++)
syn1neg[c + l2] += g * syn0[c + l1];
}
for (c = 0; c < layer1_size; c++)
syn0[c + l1] += neu1e[c];
}
}
sentence_position++;
if (sentence_position >= sentence_length) {
sentence_length = 0;
continue;
}
}
fclose(fi);
free(neu1);
free(neu1e);
pthread_exit(NULL);
}
void TrainModel() {
long a, b, c, d;
FILE *fo;
pthread_t *pt = (pthread_t *) malloc(num_threads * sizeof(pthread_t));
printf("Starting training using file %s\n", train_file);
starting_alpha = alpha;
printf("read_vocab_file:%d\t", read_vocab_file[0]);
if (read_vocab_file[0] != 0)
ReadVocab();
else
LearnVocabFromTrainFile();
if (save_vocab_file[0] != 0)
SaveVocab();
if (output_file[0] == 0)
return;
InitNet();
if (negative > 0)
InitUnigramTable();
start = clock();
for (a = 0; a < num_threads; a++)
pthread_create(&pt[a], NULL, TrainModelThread, (void *) (intptr_t) a);
for (a = 0; a < num_threads; a++)
pthread_join(pt[a], NULL);
fo = fopen(output_file, "wb");
if (classes == 0) {
fprintf(fo, "%lld %lld\n", vocab_size, layer1_size);
for (a = 0; a < vocab_size; a++) {
fprintf(fo, "%s ", vocab[a].word);
if (binary)
for (b = 0; b < layer1_size; b++)
fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo);
else
for (b = 0; b < layer1_size; b++)
fprintf(fo, "%lf ", syn0[a * layer1_size + b]);
fprintf(fo, "\n");
}
}
else {
int clcn = classes, iter = 10, closeid;
int *centcn = (int *) malloc(classes * sizeof(int));
int *cl = (int *) calloc(vocab_size, sizeof(int));
real closev, x;
real *cent = (real *) calloc(classes * layer1_size, sizeof(real));
for (a = 0; a < vocab_size; a++)
cl[a] = a % clcn;
for (a = 0; a < iter; a++) {
for (b = 0; b < clcn * layer1_size; b++)
cent[b] = 0;
for (b = 0; b < clcn; b++)
centcn[b] = 1;
for (c = 0; c < vocab_size; c++) {
for (d = 0; d < layer1_size; d++)
cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d];
centcn[cl[c]]++;
}
for (b = 0; b < clcn; b++) {
closev = 0;
for (c = 0; c < layer1_size; c++) {
cent[layer1_size * b + c] /= centcn[b];
closev += cent[layer1_size * b + c]
* cent[layer1_size * b + c];
}
closev = sqrt(closev);
for (c = 0; c < layer1_size; c++)
cent[layer1_size * b + c] /= closev;
}
for (c = 0; c < vocab_size; c++) {
closev = -10;
closeid = 0;
for (d = 0; d < clcn; d++) {
x = 0;
for (b = 0; b < layer1_size; b++)
x += cent[layer1_size * d + b] * syn0[c * layer1_size + b];
if (x > closev) {
closev = x;
closeid = d;
}
}
cl[c] = closeid;
}
}
for (a = 0; a < vocab_size; a++)
fprintf(fo, "%s %d\n", vocab[a].word, cl[a]);
free(centcn);
free(cent);
free(cl);
}
fclose(fo);
}
int ArgPos(char *str, int argc, char **argv) {
int a;
for (a = 1; a < argc; a++)
if (!strcmp(str, argv[a])) {
if (a == argc - 1) {
printf("Argument missing for %s\n", str);
exit(1);
}
return a;
}
return -1;
}
void prepare() {
int i;
vocab = (struct vocab_word *) calloc(vocab_max_size, sizeof(struct vocab_word));
vocab_hash = (int *) calloc(vocab_hash_size, sizeof(int));
printf("%d", vocab_hash[0]);
expTable = (real *) malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
for (i = 0; i < EXP_TABLE_SIZE; i++) {
expTable[i] = exp((i / (real) EXP_TABLE_SIZE * 2 - 1) * MAX_EXP);
expTable[i] = expTable[i] / (expTable[i] + 1);
}
}
int main(int argc, char **argv) {
int i;
prepare();
strcpy(train_file, "record/input.txt");
strcpy(save_vocab_file, "record/vocab.txt");
strcpy(output_file, "record/output.txt");
vocab = (struct vocab_word *) calloc(vocab_max_size, sizeof(struct vocab_word));
vocab_hash = (int *) calloc(vocab_hash_size, sizeof(int));
expTable = (real *) malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
for (i = 0; i < EXP_TABLE_SIZE; i++) {
expTable[i] = exp((i / (real) EXP_TABLE_SIZE * 2 - 1) * MAX_EXP);
expTable[i] = expTable[i] / (expTable[i] + 1);
}
TrainModel();
return 0;
}
输入数据
bb cc
bb
dd ee
bb
cc ac
bb cc ee
bb cc
ac bb
ee xx
bb
ac cc
ee bb
vocab.txt
</s> 12
bb 8
cc 5
ee 4
ac 3
xx 1
dd 1
output.txt
7 10
</s> 0.040027 0.044194 -0.038303 -0.032780 0.013666 0.030211 0.009409 0.002113 -0.036035 0.022185
bb -0.043564 0.012495 -0.007513 -0.009572 -0.033157 -0.018822 0.025793 0.030254 0.029691 0.015974
cc 0.015448 -0.038026 -0.040958 0.049696 0.038013 0.030901 -0.006039 0.040157 -0.004950 0.007347
ee -0.001492 -0.029832 0.013123 -0.013374 -0.038254 0.047542 0.043793 -0.010951 -0.002261 0.005092
ac -0.036377 -0.040071 0.045547 0.000630 -0.025824 -0.030421 -0.030765 0.016969 0.002014 0.013310
xx -0.042136 -0.038078 -0.001300 0.011436 0.025497 -0.031700 0.040796 0.009270 0.011197 -0.006084
dd 0.029865 -0.022878 -0.020975 0.021584 -0.007532 0.010307 0.018045 -0.040886 -0.019830 0.029137