设计模式(三)之行为型模式

本篇是关于设计模式的最后一讲,会讲到第三种设计模式——行为型模式,共11种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。
先来张图,看看这11种模式的关系:
第一类:通过父类与子类的关系进行实现。第二类:两个类之间。第三类:类的状态。第四类:通过中间类。
设计模式(三)之行为型模式_第1张图片

策略模式(strategy)

策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数,关系图如下:
设计模式(三)之行为型模式_第2张图片

图中ICalculator提供统一的方法,AbstractCalculator是辅助类,提供辅助方法,接下来,依次实现下每个类:
首先统一接口:

public interface ICalculator {  
    public int calculate(String exp);  
}

辅助类:

public abstract class AbstractCalculator {  

    public int[] split(String exp,String opt){  
        String array[] = exp.split(opt);  
        int arrayInt[] = new int[2];  
        arrayInt[0] = Integer.parseInt(array[0]);  
        arrayInt[1] = Integer.parseInt(array[1]);  
        return arrayInt;  
    }  
} 

三个实现类:

public class Plus extends AbstractCalculator implements ICalculator {  

    @Override  
    public int calculate(String exp) {  
        int arrayInt[] = split(exp,"+");  
        return arrayInt[0]+arrayInt[1];  
    }  
}  
public class Minus extends AbstractCalculator implements ICalculator {  

    @Override  
    public int calculate(String exp) {  
        int arrayInt[] = split(exp,"-");  
        return arrayInt[0]-arrayInt[1];  
    }  

} 
public class Multiply extends AbstractCalculator implements ICalculator {  

    @Override  
    public int calculate(String exp) {  
        int arrayInt[] = split(exp,"*");  
        return arrayInt[0]*arrayInt[1];  
    }  
}  

简单的测试类:

public class StrategyTest {  

    public static void main(String[] args) {  
        String exp = "2+8";  
        ICalculator cal = new Plus();  
        int result = cal.calculate(exp);  
        System.out.println(result);  
    }  
}  

输出:10
策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。

模板方法模式(Template Method)

在软件开发中,有时会遇到类似的情况,某个方法的实现需要多个步骤,其中有些步骤是固定的,而有些步骤并不固定,存在可变性。为了提高代码的复用性和系统的灵活性,可以使用模板方法模式来应对这类情况。
模板方法模式定义了一个算法的骨架,而将一些步骤延迟到子类中,模版方法使得子类可以在不改变算法结构的情况下,重新定义算法的步骤。
设计模式(三)之行为型模式_第3张图片

  • AbstractClass:抽象类,定义了一套算法。
  • ConcreteClass:具体实现类,可以复写某些方法。

下面使用模版方法模式,记录下所有人员的上班情况:
首先来个超类,超类中定义了一个workOneDay方法,设置为作为算法的骨架:

public abstract class Worker {  
    protected String name;  

    public Worker(String name) {  
        this.name = name;  
    }  

    /** 
     * 记录一天的工作 
     */  
    public final void workOneDay()  
    {  

        System.out.println("-----------------work start ---------------");  
        enterCompany();  
        computerOn();  
        work();  
        computerOff();  
        exitCompany();  
        System.out.println("-----------------work end ---------------");  

    }  

    /** 
     * 工作 
     */  
    public abstract void work();  

    /** 
     * 关闭电脑 
     */  
    private void computerOff()  
    {  
        System.out.println(name + "关闭电脑");  
    }  

    /** 
     * 打开电脑 
     */  
    private void computerOn()  
    {  
        System.out.println(name + "打开电脑");  
    }  

    /** 
     * 进入公司 
     */  
    public void enterCompany()  
    {  
        System.out.println(name + "进入公司");  
    }  

    /** 
     * 离开公司 
     */  
    public void exitCompany()  
    {  
        System.out.println(name + "离开公司");  
    }  

}  

定义了一个上班(算法)的骨架,包含以下步骤:
a、进入公司
b、打开电脑
c、上班情况
d、关闭电脑
e、离开公司
可以看到,a、b、d、e我们在超类中已经实现,子类仅实现work这个抽象方法,记录每天的上班情况。
程序猿:

public class ITWorker extends Worker {  

    public ITWorker(String name) {  
        super(name);  
    }  

    @Override  
    public void work() {  
        System.out.println(name + "写程序-测bug-fix bug");  
    }    
}  

测试人员:

public class QAWorker extends Worker {  

    public QAWorker(String name) {  
        super(name);  
    }  

    @Override  
    public void work() {  
        System.out.println(name + "写测试用例-提交bug-写测试用例");  
    }  

}  

HR:

public class HRWorker extends Worker {  

    public HRWorker(String name) {  
        super(name);  
    }  

    @Override  
    public void work() {  
        System.out.println(name + "看简历-打电话-接电话");  
    }    
}  

下面我们测试下:

public class Test {  
    public static void main(String[] args) {    
        Worker it = new ITWorker("小华");  
        it.workOneDay();  
        Worker hr = new HRWorker("迪迪");  
        hr.workOneDay();  
        Worker qa = new QAWorker("小明");  
        qa.workOneDay();    
    }  
}  

输出结果:

-----------------work start ---------------  
小华进入公司  
小华打开电脑  
小华写程序-测bug-fix bug  
小华关闭电脑  
小华离开公司  
-----------------work end ---------------  
-----------------work start ---------------  
迪迪进入公司  
迪迪打开电脑  
迪迪看简历-打电话-接电话  
迪迪关闭电脑  
迪迪离开公司  
-----------------work end ---------------  
-----------------work start ---------------  
小明进入公司  
小明打开电脑  
小明写测试用例-提交bug-写测试用例  
小明关闭电脑  
小明离开公司  
-----------------work end ---------------  

观察者模式(Observer)

观察者模式(又被称为发布-订阅(Publish/Subscribe)模式,属于行为型模式的一种,它定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象。这个主题对象在状态变化时,会通知所有的观察者对象,使他们能够自动更新自己。
设计模式(三)之行为型模式_第4张图片

  • Subject:抽象主题(抽象被观察者),抽象主题角色把所有观察者对象保存在一个集合里,每个主题都可以有任意数量的观察者,抽象主题提供一个接口,可以增加和删除观察者对象。
  • ConcreteSubject:具体主题(具体被观察者),该角色将有关状态存入具体观察者对象,在具体主题的内部状态发生改变时,给所有注册过的观察者发送通知。
  • Observer:抽象观察者,是观察者者的抽象类,它定义了一个更新接口,使得在得到主题更改通知时更新自己。
  • ConcrereObserver:具体观察者,是实现抽象观察者定义的更新接口,以便在得到主题更改通知时更新自身的状态。

观察者模式这种发布-订阅的形式我们可以拿微信公众号来举例,假设微信用户就是观察者,微信公众号是被观察者,有多个的微信用户关注了程序猿这个公众号,当这个公众号更新时就会通知这些订阅的微信用户。好了我们来看看用代码如何实现:
(1)抽象观察者(Observer)
里面定义了一个更新的方法:

public interface Observer {
    public void update(String message);
}

(2)具体观察者(ConcrereObserver)
微信用户是观察者,里面实现了更新的方法:

public class WeixinUser implements Observer {
    // 微信用户名
    private String name;
    public WeixinUser(String name) {
        this.name = name;
    }
    @Override
    public void update(String message) {
        System.out.println(name + "-" + message);
    }
}

(3)抽象被观察者(Subject)
抽象主题,提供了attach、detach、notify三个方法:

public interface Subject {
    /**
     * 增加订阅者
     * @param observer
     */
    public void attach(Observer observer);
    /**
     * 删除订阅者
     * @param observer
     */
    public void detach(Observer observer);
    /**
     * 通知订阅者更新消息
     */
    public void notify(String message);
}

(4)具体被观察者(ConcreteSubject)
微信公众号是具体主题(具体被观察者),里面存储了订阅该公众号的微信用户,并实现了抽象主题中的方法:

public class SubscriptionSubject implements Subject {
    //储存订阅公众号的微信用户
    private List weixinUserlist = new ArrayList();

    @Override
    public void attach(Observer observer) {
        weixinUserlist.add(observer);
    }

    @Override
    public void detach(Observer observer) {
        weixinUserlist.remove(observer);
    }

    @Override
    public void notify(String message) {
        for (Observer observer : weixinUserlist) {
            observer.update(message);
        }
    }
}

(5)客户端调用

public class Client {
    public static void main(String[] args) {
        SubscriptionSubject mSubscriptionSubject=new SubscriptionSubject();
        //创建微信用户
        WeixinUser user1=new WeixinUser("杨影枫");
        WeixinUser user2=new WeixinUser("月眉儿");
        WeixinUser user3=new WeixinUser("紫轩");
        //订阅公众号
        mSubscriptionSubject.attach(user1);
        mSubscriptionSubject.attach(user2);
        mSubscriptionSubject.attach(user3);
        //公众号更新发出消息给订阅的微信用户
        mSubscriptionSubject.notify("专栏更新了");
    }
}

运行结果:
杨影枫-专栏更新了
月眉儿-专栏更新了
紫轩-专栏更新了

使用场景:

  • 关联行为场景,需要注意的是,关联行为是可拆分的,而不是“组合”关系。
  • 事件多级触发场景。
  • 跨系统的消息交换场景,如消息队列、事件总线的处理机制。

优点:

  • 解除耦合,让耦合的双方都依赖于抽象,从而使得各自的变换都不会影响另一边的变换。

缺点:

  • 在应用观察者模式时需要考虑一下开发效率和运行效率的问题,程序中包括一个被观察者、多个观察者,开发、调试等内容会比较复杂,而且在Java中消息的通知一般是顺序执行,那么一个观察者卡顿,会影响整体的执行效率,在这种情况下,一般会采用异步实现。

Android中应用:

  • Android中也有很多使用了观察者模式,比如OnClickListener、ContentObserver、android.database.Observable等;还有组件通讯库RxJava、RxAndroid、EventBus。

迭代子模式(Iterator)

迭代器模式就是顺序访问聚集中的对象,一般来说,集合中非常常见,如果对集合类比较熟悉的话,理解本模式会十分轻松。这句话包含两层意思:一是需要遍历的对象,即聚集对象,二是迭代器对象,用于对聚集对象进行遍历访问。我们看下关系图:
设计模式(三)之行为型模式_第5张图片
这个思路和我们常用的一模一样,MyCollection中定义了集合的一些操作,MyIterator中定义了一系列迭代操作,且持有Collection实例,我们来看看实现代码:
两个接口:

public interface Collection {        
    public Iterator iterator();        
    /*取得集合元素*/  
    public Object get(int i);        
    /*取得集合大小*/  
    public int size();  
}  
public interface Iterator {  
    //前移  
    public Object previous();        
    //后移  
    public Object next();  
    public boolean hasNext();        
    //取得第一个元素  
    public Object first();  
}  

两个实现:

public class MyCollection implements Collection {    
    public String string[] = {"A","B","C","D","E"};  
    @Override  
    public Iterator iterator() {  
        return new MyIterator(this);  
    }  

    @Override  
    public Object get(int i) {  
        return string[i];  
    }  

    @Override  
    public int size() {  
        return string.length;  
    }  
}  
public class MyIterator implements Iterator {    
    private Collection collection;  
    private int pos = -1;  

    public MyIterator(Collection collection){  
        this.collection = collection;  
    }  

    @Override  
    public Object previous() {  
        if(pos > 0){  
            pos--;  
        }  
        return collection.get(pos);  
    }  

    @Override  
    public Object next() {  
        if(pos1){  
            pos++;  
        }  
        return collection.get(pos);  
    }  

    @Override  
    public boolean hasNext() {  
        if(pos1){  
            return true;  
        }else{  
            return false;  
        }  
    }  

    @Override  
    public Object first() {  
        pos = 0;  
        return collection.get(pos);  
    }    
}  

测试类:

public class Test {  

    public static void main(String[] args) {  
        Collection collection = new MyCollection();  
        Iterator it = collection.iterator();  

        while(it.hasNext()){  
            System.out.println(it.next());  
        }  
    }  
}  

输出:A B C D E
此处我们貌似模拟了一个集合类的过程,感觉是不是很爽?其实JDK中各个类也都是这些基本的东西,加一些设计模式,再加一些优化放到一起的,只要我们把这些东西学会了,掌握好了,我们也可以写出自己的集合类,甚至框架!

责任链模式(Chain of Responsibility)

接下来我们将要谈谈责任链模式,有多个对象,每个对象持有对下一个对象的引用,这样就会形成一条链,请求在这条链上传递,直到某一对象决定处理该请求。但是发出者并不清楚到底最终那个对象会处理该请求,所以,责任链模式可以实现,在隐瞒客户端的情况下,对系统进行动态的调整。先看看关系图:
设计模式(三)之行为型模式_第6张图片

Abstracthandler类提供了get和set方法,方便MyHandle类设置和修改引用对象,MyHandle类是核心,实例化后生成一系列相互持有的对象,构成一条链。

public interface Handler {  
    public void operator();  
}
public abstract class AbstractHandler {       
    private Handler handler;  

    public Handler getHandler() {  
        return handler;  
    }  

    public void setHandler(Handler handler) {  
        this.handler = handler;  
    }        
} 
public class MyHandler extends AbstractHandler implements Handler {
    private String name;  

    public MyHandler(String name) {  
        this.name = name;  
    }  

    @Override  
    public void operator() {  
        System.out.println(name+"deal!");  
        if(getHandler()!=null){  
            getHandler().operator();  
        }  
    }  
}  

测试类:

public class Test {  

    public static void main(String[] args) {  
        MyHandler h1 = new MyHandler("h1");  
        MyHandler h2 = new MyHandler("h2");  
        MyHandler h3 = new MyHandler("h3");  

        h1.setHandler(h2);  
        h2.setHandler(h3);  

        h1.operator();  
    }  
}  

输出:
h1deal!
h2deal!
h3deal!

此处强调一点就是,链接上的请求可以是一条链,可以是一个树,还可以是一个环,模式本身不约束这个,需要我们自己去实现,同时,在一个时刻,命令只允许由一个对象传给另一个对象,而不允许传给多个对象。

命令模式(Command)

命令模式很好理解,举个例子,司令员下令让士兵去干件事情,从整个事情的角度来考虑,司令员的作用是,发出口令,口令经过传递,传到了士兵耳朵里,士兵去执行。这个过程好在,三者相互解耦,任何一方都不用去依赖其他人,只需要做好自己的事儿就行,司令员要的是结果,不会去关注到底士兵是怎么实现的。我们看看关系图:
设计模式(三)之行为型模式_第7张图片

Invoker是调用者(司令员),Receiver是被调用者(士兵),MyCommand是命令,实现了Command接口,持有接收对象,看实现代码:

public interface Command {  
    public void exe();  
} 
public class MyCommand implements Command {
    private Receiver receiver;  

    public MyCommand(Receiver receiver) {  
        this.receiver = receiver;  
    }  

    @Override  
    public void exe() {  
        receiver.action();  
    }  
}  
public class Receiver {  
    public void action(){  
        System.out.println("command received!");  
    }  
}  
public class Invoker {        
    private Command command;

    public Invoker(Command command) {  
        this.command = command;  
    }  

    public void action(){  
        command.exe();  
    }  
}  

测试类:

public class Test {  

    public static void main(String[] args) {  
        Receiver receiver = new Receiver();  
        Command cmd = new MyCommand(receiver);  
        Invoker invoker = new Invoker(cmd);  
        invoker.action();  
    }  
}  

输出:
command received!

这个很好理解,命令模式的目的就是达到命令的发出者和执行者之间解耦,实现请求和执行分开,熟悉Struts的同学应该知道,Struts其实就是一种将请求和呈现分离的技术,其中必然涉及命令模式的思想!

备忘录模式(Memento)

主要目的是保存一个对象的某个状态,以便在适当的时候恢复对象,通俗的讲下:假设有原始类A,A中有各种属性,A可以决定需要备份的属性,备忘录类B是用来存储A的一些内部状态,类C呢,就是一个用来存储备忘录的,且只能存储,不能修改等操作。做个图来分析一下:
设计模式(三)之行为型模式_第8张图片

Original类是原始类,里面有需要保存的属性value及创建一个备忘录类,用来保存value值。Memento类是备忘录类,Storage类是存储备忘录的类,持有Memento类的实例,该模式很好理解。直接看源码:

public class Original {
    private String value;  

    public String getValue() {  
        return value;  
    }  

    public void setValue(String value) {  
        this.value = value;  
    }  

    public Original(String value) {  
        this.value = value;  
    }  

    public Memento createMemento(){  
        return new Memento(value);  
    }  

    public void restoreMemento(Memento memento){  
        this.value = memento.getValue();  
    }  
}  
public class Memento {
    private String value;  

    public Memento(String value) {  
        this.value = value;  
    }  

    public String getValue() {  
        return value;  
    }  

    public void setValue(String value) {  
        this.value = value;  
    }  
}  
public class Storage {
    private Memento memento;  

    public Storage(Memento memento) {  
        this.memento = memento;  
    }  

    public Memento getMemento() {  
        return memento;  
    }  

    public void setMemento(Memento memento) {  
        this.memento = memento;  
    }  
}  

测试类:

public class Test {  

    public static void main(String[] args) {            
        // 创建原始类  
        Original origi = new Original("egg");    
        // 创建备忘录  
        Storage storage = new Storage(origi.createMemento());    
        // 修改原始类的状态  
        System.out.println("初始化状态为:" + origi.getValue());  
        origi.setValue("niu");  
        System.out.println("修改后的状态为:" + origi.getValue());    
        // 恢复原始类的状态  
        origi.restoreMemento(storage.getMemento());  
        System.out.println("恢复后的状态为:" + origi.getValue());  
    }  
}  

输出:
初始化状态为:egg
修改后的状态为:niu
恢复后的状态为:egg

简单描述下:新建原始类时,value被初始化为egg,后经过修改,将value的值置为niu,最后倒数第二行进行恢复状态,结果成功恢复了。其实我觉得这个模式叫“备份-恢复”模式最形象。

状态模式(State)

核心思想就是:当对象的状态改变时,同时改变其行为,很好理解!就拿QQ来说,有几种状态,在线、隐身、忙碌等,每个状态对应不同的操作,而且你的好友也能看到你的状态,所以,状态模式就两点:1、可以通过改变状态来获得不同的行为。2、你的好友能同时看到你的变化。看图:
设计模式(三)之行为型模式_第9张图片

State类是个状态类,Context类可以实现切换,我们来看看代码:

public class State {        
    private String value;  

    public String getValue() {  
        return value;  
    }  

    public void setValue(String value) {  
        this.value = value;  
    }  

    public void method1(){  
        System.out.println("execute the first opt!");  
    }  

    public void method2(){  
        System.out.println("execute the second opt!");  
    }  
}  
public class Context {  
    private State state;  

    public Context(State state) {  
        this.state = state;  
    }  

    public State getState() {  
        return state;  
    }  

    public void setState(State state) {  
        this.state = state;  
    }  

    public void method() {  
        if (state.getValue().equals("state1")) {  
            state.method1();  
        } else if (state.getValue().equals("state2")) {  
            state.method2();  
        }  
    }  
}  

测试类:

public class Test {  

    public static void main(String[] args) {            
        State state = new State();  
        Context context = new Context(state);  

        //设置第一种状态  
        state.setValue("state1");  
        context.method();  

        //设置第二种状态  
        state.setValue("state2");  
        context.method();  
    }  
}  

输出:
execute the first opt!
execute the second opt!

根据这个特性,状态模式在日常开发中用的挺多的,尤其是做网站的时候,我们有时希望根据对象的某一属性,区别开他们的一些功能,比如说简单的权限控制等。

访问者模式(Visitor)

访问者模式把数据结构和作用于结构上的操作解耦合,使得操作集合可相对自由地演化。访问者模式适用于数据结构相对稳定算法又易变化的系统。因为访问者模式使得算法操作增加变得容易。若系统数据结构对象易于变化,经常有新的数据对象增加进来,则不适合使用访问者模式。访问者模式的优点是增加操作很容易,因为增加操作意味着增加新的访问者。访问者模式将有关行为集中到一个访问者对象中,其改变不影响系统数据结构。其缺点就是增加新的数据结构很困难。
简单来说,访问者模式就是一种分离对象数据结构与行为的方法,通过这种分离,可达到为一个被访问者动态添加新的操作而无需做其它的修改的效果。简单关系图:
设计模式(三)之行为型模式_第10张图片

来看看源码:一个Visitor类,存放要访问的对象

public interface Visitor {  
    public void visit(Subject sub);  
}  
public class MyVisitor implements Visitor {    
    @Override  
    public void visit(Subject sub) {  
        System.out.println("visit the subject:"+sub.getSubject());  
    }  
}  

Subject类,accept方法,接受将要访问它的对象,getSubject()获取将要被访问的属性

public interface Subject {  
    public void accept(Visitor visitor);  
    public String getSubject();  
}  
public class MySubject implements Subject {  

    @Override  
    public void accept(Visitor visitor) {  
        visitor.visit(this);  
    }  

    @Override  
    public String getSubject() {  
        return "love";  
    }  
}   

测试类:

public class Test {  

    public static void main(String[] args) {
        Visitor visitor = new MyVisitor();  
        Subject sub = new MySubject();  
        sub.accept(visitor);      
    }  
}  

输出:
visit the subject:love

该模式适用场景:如果我们想为一个现有的类增加新功能,不得不考虑几个事情:1、新功能会不会与现有功能出现兼容性问题?2、以后会不会再需要添加?3、如果类不允许修改代码怎么办?面对这些问题,最好的解决方法就是使用访问者模式,访问者模式适用于数据结构相对稳定的系统,把数据结构和算法解耦。

中介者模式(Mediator)

中介者模式也是用来降低类之间的耦合的,因为如果类之间有依赖关系的话,不利于功能的拓展和维护,因为只要修改一个对象,其它关联的对象都得进行修改。如果使用中介者模式,只需关心和Mediator类的关系,具体类之间的关系及调度交给Mediator就行,这有点像spring容器的作用。先看看图:
设计模式(三)之行为型模式_第11张图片

User类统一接口,User1和User2分别是不同的对象,二者之间有关联,如果不采用中介者模式,则需要二者相互持有引用,这样二者的耦合度很高,为了解耦,引入了Mediator类,提供统一接口,MyMediator为其实现类,里面持有User1和User2的实例,用来实现对User1和User2的控制。这样User1和User2两个对象相互独立,他们只需要保持好和Mediator之间的关系就行,剩下的全由MyMediator类来维护!基本实现:

public interface Mediator {  
    public void createMediator();  
    public void workAll();  
}  
public class MyMediator implements Mediator {
    private User user1;  
    private User user2;  

    public User getUser1() {  
        return user1;  
    }  

    public User getUser2() {
        return user2;  
    }  

    @Override  
    public void createMediator() {  
        user1 = new User1(this);  
        user2 = new User2(this);  
    }  

    @Override  
    public void workAll() {  
        user1.work();  
        user2.work();  
    }  
}  
public abstract class User {      
    private Mediator mediator;  

    public Mediator getMediator(){  
        return mediator;  
    }  

    public User(Mediator mediator) {  
        this.mediator = mediator;  
    }  

    public abstract void work();  
}  
public class User1 extends User {  

    public User1(Mediator mediator){  
        super(mediator);  
    }  

    @Override  
    public void work() {  
        System.out.println("user1 exe!");  
    }  
}  
public class User2 extends User {  

    public User2(Mediator mediator){  
        super(mediator);  
    }  

    @Override  
    public void work() {  
        System.out.println("user2 exe!");  
    }  
}  

测试类:

public class Test {  

    public static void main(String[] args) {  
        Mediator mediator = new MyMediator();  
        mediator.createMediator();  
        mediator.workAll();  
    }  
} 

输出:
user1 exe!
user2 exe!

解释器模式(Interpreter)

解释器模式一般主要应用在OOP开发中的编译器的开发中,所以适用面比较窄。
设计模式(三)之行为型模式_第12张图片

Context类是一个上下文环境类,Plus和Minus分别是用来计算的实现,代码如下:

public interface Expression {  
    public int interpret(Context context);  
} 
public class Plus implements Expression {  

    @Override  
    public int interpret(Context context) {  
        return context.getNum1()+context.getNum2();  
    }  
} 
public class Minus implements Expression {  

    @Override  
    public int interpret(Context context) {  
        return context.getNum1()-context.getNum2();  
    }  
}  
public class Context {    
    private int num1;  
    private int num2;  

    public Context(int num1, int num2) {  
        this.num1 = num1;  
        this.num2 = num2;  
    }  

    public int getNum1() {  
        return num1;  
    }  
    public void setNum1(int num1) {  
        this.num1 = num1;  
    }  
    public int getNum2() {  
        return num2;  
    }  
    public void setNum2(int num2) {  
        this.num2 = num2;  
    }        
}  

测试类:

public class Test {  

    public static void main(String[] args) {    
        // 计算9+2-8的值  
        int result = new Minus().interpret((new Context(new Plus().interpret(new Context(9, 2)), 8)));  
        System.out.println(result);  
    }  
}  

最后输出正确的结果:3。
基本就这样,解释器模式用来做各种各样的解释器,如正则表达式等的解释器等等!

你可能感兴趣的:(设计模式)