在完成了zImage自解压之后,就跳转到了解压后的内核(也就是vmlinux的bin版本Image),具体的入口可以在arch/arm/kernel/vmlinux.lds.S(最终的链接脚本是通过这个文件产生的)中获得:
......
SECTIONS
{
#ifdef CONFIG_XIP_KERNEL
. = XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR);
#else
. = PAGE_OFFSET + TEXT_OFFSET;
#endif
.init : { /* Init code and data */
_stext = .;
_sinittext = .;
......
这个入口在arch/arm/kernel/head.S中,这个文件就是Linux内核真正启动的地方,是初始化部分的开始,用汇编写成。他必须为后面的C代码做好准备,下面先给出程序的流程图,后面是中文注释的代码。
这里有一些宏定义必须知道他的含义:
宏 | 出现的位置 | 默认值 | 定义 |
KERNEL_RAM_ADDR | arch/arm/kernel/head.S | 0xC0008000 | 内核在内存中的虚拟地址 |
PAGE_OFFSET | arch/arm/include/asm/memory.h | 0xC0000000 | 内核虚拟地址空间的起始地址 |
TEXT_OFFSET | arch/arm/Makefile | 0x00008000 | 内核起始位置相对于内存起始位置的偏移 |
PHYS_OFFSET | arch/arm/include/asm/memory.h | 构架相关 | 物理内存的起始地址 |
该阶段完成的工作有:
arch/arm/kernel/head.S
/*
* linux/arch/arm/kernel/head.S
*
* Copyright (C) 1994-2002 Russell King
* Copyright (c) 2003 ARM Limited
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* 所有32-bit CPU的内核启动代码
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef CONFIG_DEBUG_LL
#include
#endif
/*
* swapper_pg_dir 是初始页表的虚拟地址.
* 我们将页表放在KERNEL_RAM_VADDR以下16K的空间中. 因此我们必须保证
* KERNEL_RAM_VADDR已经被正常设置. 当前, 我们期望的是
* 这个地址的最后16 bits为0x8000, 但我们或许可以放宽这项限制到
* KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.
*/
#define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET)
#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
#error KERNEL_RAM_VADDR must start at 0xXXXX8000
#endif
.globl swapper_pg_dir
.equ swapper_pg_dir, KERNEL_RAM_VADDR - 0x4000
/*
* TEXT_OFFSET 是内核代码(解压后)相对于RAM起始的偏移.
* 而#TEXT_OFFSET - 0x4000就是页表相对于RAM起始的偏移.
* 这个宏的作用是将phys(RAM的启示地址)加上页表的偏移,
* 而得到页表的起始物理地址
*/
.macro pgtbl, rd, phys
add \rd, \phys, #TEXT_OFFSET - 0x4000
.endm
#ifdef CONFIG_XIP_KERNEL
#define KERNEL_START XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
#define KERNEL_END _edata_loc
#else
#define KERNEL_START KERNEL_RAM_VADDR
#define KERNEL_END _end
#endif
/*
* 内核启动入口点.
* ---------------------------
*
* 这个入口正常情况下是在解压完成后被调用的.
* 调用条件: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
* r1 = machine nr, r2 = atags or dtb pointer.
* 这些条件在解压完成后会被逐一满足,然后才跳转过来。
*
* 这些代码大多数是位置无关的, 如果你的内核入口地址在连接时确定为
* 0xc0008000, 你调用此函数的物理地址就是 __pa(0xc0008000).
*
* 完整的machineID列表,请参见 linux/arch/arm/tools/mach-types
*
* 我们尽量让代码简洁; 不在此处添加任何设备特定的代码
* - 这些特定的初始化代码是boot loader的工作(或在极端情况下,
* 有充分理由的情况下, 可以由zImage完成)。
*/
__HEAD
ENTRY(stext)
setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ CPU模式设置宏
@ (进入svc模式并且关闭中断)
mrc p15, 0, r9, c0, c0 @ 获取处理器id-->r9
bl __lookup_processor_type @ 返回r5=procinfo r9=cpuid
movs r10, r5 @ r10=r5,并可以检测r5=0?注意当前r10的值
THUMB( it eq ) @ force fixup-able long branch encoding
beq __error_p @ yes, error 'p'如果r5=0,则内核处理器不匹配,出错~死循环
/*
* 获取RAM的起始物理地址,并保存于 r8 = phys_offset
* XIP内核与普通在RAM中运行的内核不同
* (1)CONFIG_XIP_KERNEL
* 通过运行时计算????
* (2)正常RAM中运行的内核
* 通过编译时确定(PLAT_PHYS_OFFSET 一般在arch/arm/mach-xxx/include/mach/memory.h定义)
*
*/
#ifndef CONFIG_XIP_KERNEL
adr r3, 2f
ldmia r3, {r4, r8}
sub r4, r3, r4 @ (PHYS_OFFSET - PAGE_OFFSET)
add r8, r8, r4 @ PHYS_OFFSET
#else
ldr r8, =PLAT_PHYS_OFFSET
#endif
/*
* r1 = machine no, r2 = atags or dtb,
* r8 = phys_offset, r9 = cpuid, r10 = procinfo
*/
bl __vet_atags @ 判断r2(内核启动参数)指针的有效性
#ifdef CONFIG_SMP_ON_UP
bl __fixup_smp @ ???如果运行SMP内核在单处理器系统中启动,做适当调整
#endif
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT
bl __fixup_pv_table @ ????根据内核在内存中的位置修正物理地址与虚拟地址的转换机制
#endif
bl __create_page_tables @ 初始化页表!
/*
* 以下使用位置无关的方法调用的是CPU特定代码。
* 详情请见arch/arm/mm/proc-*.S
* r10 = xxx_proc_info 结构体的基地址(在上面__lookup_processor_type函数中选中的)
* 返回时, CPU 已经为 MMU 的启动做好了准备,
* 且 r0 保存着CPU控制寄存器的值.
*/
ldr r13, =__mmap_switched @ 在MMU启动之后跳入的第一个虚拟地址
adr lr, BSYM(1f) @ 设置返回的地址(PIC)
mov r8, r4 @ 将swapper_pg_dir的物理地址放入r8,
@ 以备__enable_mmu中将其放入TTBR1
ARM( add pc, r10, #PROCINFO_INITFUNC ) @ 跳入构架相关的初始化处理器函数(例如A8的是__v7_setup)
THUMB( add r12, r10, #PROCINFO_INITFUNC ) @主要目的只配置CP15(包括缓存配置)
THUMB( mov pc, r12 )
1: b __enable_mmu @ 启动MMU
ENDPROC(stext)
.ltorg
#ifndef CONFIG_XIP_KERNEL
2: .long .
.long PAGE_OFFSET
#endif
/*
* 创建初始化页表. 我们只创建最基本的页表,
* 以满足内核运行的需要,
* 这通常意味着仅映射内核代码本身.
*
* r8 = phys_offset, r9 = cpuid, r10 = procinfo
*
* 返回:
* r0, r3, r5-r7 被篡改
* r4 = 页表物理地址
*/
__create_page_tables:
pgtbl r4, r8 @ 现在r4 = 页表的起始物理地址
/*
* 清零16K的一级初始页表区
* 这些页表在内核自解压时被设置过
* (此时MMU已关闭)
*/
mov r0, r4
mov r3, #0
add r6, r0, #0x4000
1: str r3, [r0], #4
str r3, [r0], #4
str r3, [r0], #4
str r3, [r0], #4
teq r0, r6
bne 1b
/*
* 获取节描述符的默认配置(除节基址外的其他配置)
* 这个数据依构架而不同,数据是用汇编文件配置的:
* arch/arm/mm/proc-xxx.S
* (此时MMU已关闭)
*/
ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ 获取mm_mmuflags(节描述符默认配置),保存于r7
/*
* 创建特定映射,以满足__enable_mmu的需求。
* 此特定映射将被paging_init()删除。
*
* 其实这个特定的映射就是仅映射__enable_mmu功能函数区的页表
* 以保证在启用mmu时代码的正确执行--1:1映射(物理地址=虚拟地址)
*/
adr r0, __enable_mmu_loc
ldmia r0, {r3, r5, r6}
sub r0, r0, r3 @ 获取编译时确定的虚拟地址到当前物理地址的偏移
add r5, r5, r0 @ __enable_mmu的当前物理地址
add r6, r6, r0 @ __enable_mmu_end的当前物理地址
mov r5, r5, lsr #20 @ __enable_mmu的节基址
mov r6, r6, lsr #20 @ __enable_mmu_end的节基址
1: orr r3, r7, r5, lsl #20 @ 生成节描述符:flags + 节基址
str r3, [r4, r5, lsl #2] @ 设置节描述符,1:1映射(物理地址=虚拟地址)
teq r5, r6 @ 完成映射?(理论上一次就够了,这个函数应该不会大于1M吧~)
addne r5, r5, #1 @ r5 = 下一节的基址
bne 1b
/*
* 现在创建内核的逻辑映射区页表(节映射)
* 创建范围:KERNEL_START---KERNEL_END
* KERNEL_START:内核最终运行的虚拟地址
* KERNEL_END:内核代码结束的虚拟地址(bss段之后,但XIP不是)
*/
mov r3, pc @ 获取当前物理地址
mov r3, r3, lsr #20 @ r3 = 当前物理地址的节基址
orr r3, r7, r3, lsl #20 @ r3 为当前物理地址的节描述符
/*
* 下面是为了确定页表项的入口地址
* 其实页表入口项的偏移就反应了对应的虚拟地址的高位
*
* 由于ARM指令集的8bit位图问题,只能分两次得到
* KERNEL_START:内核最终运行的虚拟地址
*
*/
add r0, r4, #(KERNEL_START & 0xff000000) >> 18
str r3, [r0, #(KERNEL_START & 0x00f00000) >> 18]!
ldr r6, =(KERNEL_END - 1)
add r0, r0, #4
add r6, r4, r6, lsr #18 @ r6 = 内核逻辑映射结束的节基址
1: cmp r0, r6
add r3, r3, #1 << 20 @ 生成节描述符(只需做基址递增)
strls r3, [r0], #4 @ 设置节描述符
bls 1b
#ifdef CONFIG_XIP_KERNEL
/*
* 如果是XIP技术的内核,上面的映射只能映射内核代码和只读数据部分
* 这里我们再映射一些RAM来作为 .data and .bss 空间.
*/
add r3, r8, #TEXT_OFFSET
orr r3, r3, r7 @ 生成节描述符:flags + 节基址
add r0, r4, #(KERNEL_RAM_VADDR & 0xff000000) >> 18
str r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> 18]!
ldr r6, =(_end - 1)
add r0, r0, #4
add r6, r4, r6, lsr #18
1: cmp r0, r6
add r3, r3, #1 << 20
strls r3, [r0], #4
bls 1b
#endif
/*
* 然后映射启动参数区(现在r2中的atags物理地址)
* 或者
* 如果启动参数区的虚拟地址没有确定(或者无效),则会映射RAM的头1MB.
*/
mov r0, r2, lsr #20
movs r0, r0, lsl #20
moveq r0, r8 @ 如果atags指针无效,则r0 = r8(映射RAM的头1MB)
sub r3, r0, r8
add r3, r3, #PAGE_OFFSET @ 转换为虚拟地址
add r3, r4, r3, lsr #18 @ 确定页表项(节描述符)入口地址
orr r6, r7, r0 @ 生成节描述符
str r6, [r3] @ 设置节描述符
/*
* 下面是调试信息的输出函数区
* 这里做了IO内存空间的节映射
*/
#ifdef CONFIG_DEBUG_LL
#ifndef CONFIG_DEBUG_ICEDCC
/*
* 为串口调试映射IO内存空间(将串口IO内存之上的所有地址都映射了)
* 这允许调试信息(在paging_init之前)从串口控制台输出
*
*/
addruart r7, r3 @ 宏代码,位于arch/arm/mach-xxx/include/mach/debug-macro.S
@ 作用是将串口控制寄存器的基址放入r7(物理地址)和r3(虚拟地址)
mov r3, r3, lsr #20
mov r3, r3, lsl #2
add r0, r4, r3 @ r0为串口IO内存映射页表项的入口地址
rsb r3, r3, #0x4000 @ 16K(PTRS_PER_PGD*sizeof(long))-r3
cmp r3, #0x0800 @ limit to 512MB,入口地址有效性检查(只能在最后#0x0800内)
movhi r3, #0x0800 @ 也就是说虚拟地址被限制在3.5G以上
add r6, r0, r3 @ r6为页表结束地址
mov r3, r7, lsr #20
ldr r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
orr r3, r7, r3, lsl #20 @ 生成节描述符
1: str r3, [r0], #4
add r3, r3, #1 << 20
teq r0, r6
bne 1b
#else /* CONFIG_DEBUG_ICEDCC */
/* 我们无需任何串口调试映射 for ICEDCC */
ldr r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
#endif /* !CONFIG_DEBUG_ICEDCC */
#if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)
/*
* 如果我们在使用 NetWinder 或 CATS,我们也需要为调试信息映射
* 16550-type 串口
*/
add r0, r4, #0xff000000 >> 18
orr r3, r7, #0x7c000000
str r3, [r0]
#endif
#ifdef CONFIG_ARCH_RPC
/*
* Map in screen at 0x02000000 & SCREEN2_BASE
* Similar reasons here - for debug. This is
* only for Acorn RiscPC architectures.
*/
add r0, r4, #0x02000000 >> 18
orr r3, r7, #0x02000000
str r3, [r0]
add r0, r4, #0xd8000000 >> 18
str r3, [r0]
#endif
#endif
mov pc, lr @页表创建结束,返回
ENDPROC(__create_page_tables)
.ltorg
.align
__enable_mmu_loc:
.long .
.long __enable_mmu
.long __enable_mmu_end
#if defined(CONFIG_SMP)
__CPUINIT
ENTRY(secondary_startup)
/*
* Common entry point for secondary CPUs.
*
* Ensure that we're in SVC mode, and IRQs are disabled. Lookup
* the processor type - there is no need to check the machine type
* as it has already been validated by the primary processor.
*/
setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9
mrc p15, 0, r9, c0, c0 @ get processor id
bl __lookup_processor_type
movs r10, r5 @ invalid processor?
moveq r0, #'p' @ yes, error 'p'
THUMB( it eq ) @ force fixup-able long branch encoding
beq __error_p
/*
* Use the page tables supplied from __cpu_up.
*/
adr r4, __secondary_data
ldmia r4, {r5, r7, r12} @ address to jump to after
sub lr, r4, r5 @ mmu has been enabled
ldr r4, [r7, lr] @ get secondary_data.pgdir
add r7, r7, #4
ldr r8, [r7, lr] @ get secondary_data.swapper_pg_dir
adr lr, BSYM(__enable_mmu) @ return address
mov r13, r12 @ __secondary_switched address
ARM( add pc, r10, #PROCINFO_INITFUNC ) @ initialise processor
@ (return control reg)
THUMB( add r12, r10, #PROCINFO_INITFUNC )
THUMB( mov pc, r12 )
ENDPROC(secondary_startup)
/*
* r6 = &secondary_data
*/
ENTRY(__secondary_switched)
ldr sp, [r7, #4] @ get secondary_data.stack
mov fp, #0
b secondary_start_kernel
ENDPROC(__secondary_switched)
.align
.type __secondary_data, %object
__secondary_data:
.long .
.long secondary_data
.long __secondary_switched
#endif /* defined(CONFIG_SMP) */
/*
* 在最后启动MMU前,设置一些常用位 Essentially
* 其实,这里只是加载了页表指针和域访问控制数据寄存器
*
*
* r0 = cp#15 control register
* r1 = machine ID
* r2 = atags or dtb pointer
* r4 = page table pointer
* r9 = processor ID
* r13 = 最后要跳入的虚拟地址
*/
__enable_mmu:
#ifdef CONFIG_ALIGNMENT_TRAP
orr r0, r0, #CR_A
#else
bic r0, r0, #CR_A
#endif
#ifdef CONFIG_CPU_DCACHE_DISABLE
bic r0, r0, #CR_C
#endif
#ifdef CONFIG_CPU_BPREDICT_DISABLE
bic r0, r0, #CR_Z
#endif
#ifdef CONFIG_CPU_ICACHE_DISABLE
bic r0, r0, #CR_I
#endif
mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \
domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \
domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \
domain_val(DOMAIN_IO, DOMAIN_CLIENT)) @设置域访问控制数据
mcr p15, 0, r5, c3, c0, 0 @ 载入域访问控制数据到DACR
mcr p15, 0, r4, c2, c0, 0 @ 载入页表基址到TTBR0
b __turn_mmu_on @ 开启MMU
ENDPROC(__enable_mmu)
/*
* 使能 MMU. 这完全改变了可见的内存地址空间结构。
* 您将无法通过这里跟踪执行。
* 如果你已对此进行探究, *请*在向邮件列表发送另一个新帖之前,
* 检查linux-arm-kernel的邮件列表归档
*
* r0 = cp#15 control register
* r1 = machine ID
* r2 = atags or dtb pointer
* r9 = processor ID
* r13 = 最后要跳入的*虚拟*地址
*
* 其他寄存器依赖上面的调用函数
*/
.align 5
__turn_mmu_on:
mov r0, r0
mcr p15, 0, r0, c1, c0, 0 @ 设置cp#15控制寄存器(启用MMU)
mrc p15, 0, r3, c0, c0, 0 @ read id reg
mov r3, r3
mov r3, r13 @ r3中装入最后要跳入的*虚拟*地址
mov pc, r3 @ 跳转到__mmap_switched
__enable_mmu_end:
ENDPROC(__turn_mmu_on)
#ifdef CONFIG_SMP_ON_UP
__INIT
__fixup_smp:
and r3, r9, #0x000f0000 @ architecture version
teq r3, #0x000f0000 @ CPU ID supported?
bne __fixup_smp_on_up @ no, assume UP
bic r3, r9, #0x00ff0000
bic r3, r3, #0x0000000f @ mask 0xff00fff0
mov r4, #0x41000000
orr r4, r4, #0x0000b000
orr r4, r4, #0x00000020 @ val 0x4100b020
teq r3, r4 @ ARM 11MPCore?
moveq pc, lr @ yes, assume SMP
mrc p15, 0, r0, c0, c0, 5 @ read MPIDR
and r0, r0, #0xc0000000 @ multiprocessing extensions and
teq r0, #0x80000000 @ not part of a uniprocessor system?
moveq pc, lr @ yes, assume SMP
__fixup_smp_on_up:
adr r0, 1f
ldmia r0, {r3 - r5}
sub r3, r0, r3
add r4, r4, r3
add r5, r5, r3
b __do_fixup_smp_on_up
ENDPROC(__fixup_smp)
.align
1: .word .
.word __smpalt_begin
.word __smpalt_end
.pushsection .data
.globl smp_on_up
smp_on_up:
ALT_SMP(.long 1)
ALT_UP(.long 0)
.popsection
#endif
.text
__do_fixup_smp_on_up:
cmp r4, r5
movhs pc, lr
ldmia {r0, r6}
ARM( str r6, [r0, r3] )
THUMB( add r0, r0, r3 )
#ifdef __ARMEB__
THUMB( mov r6, r6, ror #16 ) @ Convert word order for big-endian.
#endif
THUMB( strh r6, [r0], #2 ) @ For Thumb-2, store as two halfwords
THUMB( mov r6, r6, lsr #16 ) @ to be robust against misaligned r3.
THUMB( strh r6, [r0] )
b __do_fixup_smp_on_up
ENDPROC(__do_fixup_smp_on_up)
ENTRY(fixup_smp)
stmfd {r4 - r6, lr}
mov r4, r0
add r5, r0, r1
mov r3, #0
bl __do_fixup_smp_on_up
ldmfd {r4 - r6, pc}
ENDPROC(fixup_smp)
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT
/* __fixup_pv_table - patch the stub instructions with the delta between
* PHYS_OFFSET and PAGE_OFFSET, which is assumed to be 16MiB aligned and
* can be expressed by an immediate shifter operand. The stub instruction
* has a form of '(add|sub) rd, rn, #imm'.
*/
__HEAD
__fixup_pv_table:
adr r0, 1f
ldmia r0, {r3-r5, r7}
sub r3, r0, r3 @ PHYS_OFFSET - PAGE_OFFSET
add r4, r4, r3 @ adjust table start address
add r5, r5, r3 @ adjust table end address
add r7, r7, r3 @ adjust __pv_phys_offset address
str r8, [r7] @ save computed PHYS_OFFSET to __pv_phys_offset
#ifndef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
mov r6, r3, lsr #24 @ constant for add/sub instructions
teq r3, r6, lsl #24 @ must be 16MiB aligned
#else
mov r6, r3, lsr #16 @ constant for add/sub instructions
teq r3, r6, lsl #16 @ must be 64kiB aligned
#endif
THUMB( it ne @ cross section branch )
bne __error
str r6, [r7, #4] @ save to __pv_offset
b __fixup_a_pv_table
ENDPROC(__fixup_pv_table)
.align
1: .long .
.long __pv_table_begin
.long __pv_table_end
2: .long __pv_phys_offset
.text
__fixup_a_pv_table:
#ifdef CONFIG_THUMB2_KERNEL
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
lsls r0, r6, #24
lsr r6, #8
beq 1f
clz r7, r0
lsr r0, #24
lsl r0, r7
bic r0, 0x0080
lsrs r7, #1
orrcs r0, #0x0080
orr r0, r0, r7, lsl #12
#endif
1: lsls r6, #24
beq 4f
clz r7, r6
lsr r6, #24
lsl r6, r7
bic r6, #0x0080
lsrs r7, #1
orrcs r6, #0x0080
orr r6, r6, r7, lsl #12
orr r6, #0x4000
b 4f
2: @ at this point the C flag is always clear
add r7, r3
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
ldrh ip, [r7]
tst ip, 0x0400 @ the i bit tells us LS or MS byte
beq 3f
cmp r0, #0 @ set C flag, and ...
biceq ip, 0x0400 @ immediate zero value has a special encoding
streqh ip, [r7] @ that requires the i bit cleared
#endif
3: ldrh ip, [r7, #2]
and ip, 0x8f00
orrcc ip, r6 @ mask in offset bits 31-24
orrcs ip, r0 @ mask in offset bits 23-16
strh ip, [r7, #2]
4: cmp r4, r5
ldrcc r7, [r4], #4 @ use branch for delay slot
bcc 2b
bx lr
#else
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT_16BIT
and r0, r6, #255 @ offset bits 23-16
mov r6, r6, lsr #8 @ offset bits 31-24
#else
mov r0, #0 @ just in case...
#endif
b 3f
2: ldr ip, [r7, r3]
bic ip, ip, #0x000000ff
tst ip, #0x400 @ rotate shift tells us LS or MS byte
orrne ip, ip, r6 @ mask in offset bits 31-24
orreq ip, ip, r0 @ mask in offset bits 23-16
str ip, [r7, r3]
3: cmp r4, r5
ldrcc r7, [r4], #4 @ use branch for delay slot
bcc 2b
mov pc, lr
#endif
ENDPROC(__fixup_a_pv_table)
ENTRY(fixup_pv_table)
stmfd {r4 - r7, lr}
ldr r2, 2f @ get address of __pv_phys_offset
mov r3, #0 @ no offset
mov r4, r0 @ r0 = table start
add r5, r0, r1 @ r1 = table size
ldr r6, [r2, #4] @ get __pv_offset
bl __fixup_a_pv_table
ldmfd {r4 - r7, pc}
ENDPROC(fixup_pv_table)
.align
2: .long __pv_phys_offset
.data
.globl __pv_phys_offset
.type __pv_phys_offset, %object
__pv_phys_offset:
.long 0
.size __pv_phys_offset, . - __pv_phys_offset
__pv_offset:
.long 0
#endif
#include "head-common.S"
arch/arm/kernel/head-common.S
/*
* linux/arch/arm/kernel/head-common.S
*
* Copyright (C) 1994-2002 Russell King
* Copyright (c) 2003 ARM Limited
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#define ATAG_CORE 0x54410001
#define ATAG_CORE_SIZE ((2*4 + 3*4) >> 2)
#define ATAG_CORE_SIZE_EMPTY ((2*4) >> 2)
#ifdef CONFIG_CPU_BIG_ENDIAN
#define OF_DT_MAGIC 0xd00dfeed
#else
#define OF_DT_MAGIC 0xedfe0dd0 /* 0xd00dfeed in big-endian */
#endif
/*
* 异常处理. 一些我们无法处理的错误.
* 我们应当告诉用户(这些错误信息),但因为我们甚至无法保证是在正确的架构上运行,
* 所以我们什么都不做(死循环)。
*
* 如果 CONFIG_DEBUG_LL 被设置,我们试图打印出错误信息,
* 并希望这可以对我们有帮助 (例如这对bootloader没有提供适当的处理器ID
* 是有帮助的).
*/
__HEAD
/* 确定r2(内核启动参数)指针的有效性。 The heuristic 要求
* 是4Byte对齐的、在物理内存的头16K中,且以ATAG_CORE标记开头。
* 如果选择了CONFIG_OF_FLATTREE,dtb指针也是可以接受的.
*
* 在这个函数的未来版本中 可能会对物理地址的要求更为宽松,
* 且如果有必要的话,可能可以移动ATAGS数据块.
*
* 返回:
* r2 可能是有效的 atags 指针, 有效的 dtb 指针,或者0
* r5, r6 被篡改
*/
__vet_atags:
tst r2, #0x3 @ 是否4Byte对齐?
bne 1f @ 不是则认为指针无效,返回
ldr r5, [r2, #0] @获取r2指向的前4Byte,用于下面测试
#ifdef CONFIG_OF_FLATTREE
ldr r6, =OF_DT_MAGIC @ is it a DTB?
cmp r5, r6
beq 2f
#endif
/* 内核启动参数块的规范是:
* (wait for updata)
*/
cmp r5, #ATAG_CORE_SIZE @ 第一个tag是ATAG_CORE吗?测试的是tag_header中的size
@ 如果为ATAG_CORE,那么必为ATAG_CORE_SIZE
cmpne r5, #ATAG_CORE_SIZE_EMPTY @ 如果第一个tag的tag_header中的size为ATAG_CORE_SIZE_EMPTY
@ 说明此处也有atags
bne 1f
ldr r5, [r2, #4] @ 第一个tag_header的tag(魔数)
ldr r6, =ATAG_CORE @ 获取ATAG_CORE的魔数
cmp r5, r6 @ 判断第一个tag是否为ATAG_CORE
bne 1f @ 不是则认为指针无效,返回
2: mov pc, lr @ atag/dtb 指针有效
1: mov r2, #0
mov pc, lr
ENDPROC(__vet_atags)
/*
* 以下的代码段是在MMU开启的状态下执行的,
* 而且使用的是绝对地址; 这不是位置无关代码.
*
* r0 = cp#15 控制寄存器值
* r1 = machine ID
* r2 = atags/dtb pointer
* r9 = processor ID
*/
__INIT
__mmap_switched:
adr r3, __mmap_switched_data
ldmia {r4, r5, r6, r7}
cmp r4, r5 @ 如果有必要,拷贝数据段。
@ 对比__data_loc和_sdata
@ __data_loc是数据段在内核代码映像中的存储位置
@ _sdata是数据段的链接位置(在内存中的位置)
@ 如果是XIP技术的内核,这两个数据肯定不同
1: cmpne r5, r6 @ 检测数据是否拷贝完成
ldrne fp, [r4], #4
strne fp, [r5], #4
bne 1b
mov fp, #0 @ 清零 BSS 段(and zero fp)
1: cmp r6, r7 @ 检测是否完成
strcc fp, [r6],#4
bcc 1b
/* 这里将需要的数据从寄存器中转移到全局变量中,
* 因为最后会跳入C代码,寄存器会被使用。
*/
ARM( ldmia r3, {r4, r5, r6, r7, sp})
THUMB( ldmia r3, {r4, r5, r6, r7} )
THUMB( ldr sp, [r3, #16] )
str r9, [r4] @ 保存 processor ID到全局变量processor_id
str r1, [r5] @ 保存 machine type到全局变量__machine_arch_type
str r2, [r6] @ 保存 atags指针到全局变量__atags_pointer
bic r4, r0, #CR_A @ 清除cp15 控制寄存器值的 'A' bit(禁用对齐错误检查)
stmia r7, {r0, r4} @ 保存控制寄存器值到全局变量cr_alignment(在arch/arm/kernel/entry-armv.S)
b start_kernel @ 跳入C代码(init/main.c)
ENDPROC(__mmap_switched)
.align 2
.type __mmap_switched_data, %object
__mmap_switched_data:
.long __data_loc @ r4
.long _sdata @ r5
.long __bss_start @ r6
.long _end @ r7
.long processor_id @ r4
.long __machine_arch_type @ r5
.long __atags_pointer @ r6
.long cr_alignment @ r7
.long init_thread_union + THREAD_START_SP @ sp
.size __mmap_switched_data, . - __mmap_switched_data
/*
* 这里提供一个 C-API 版本的 __lookup_processor_type
*/
ENTRY(lookup_processor_type)
stmfd {r4 - r6, r9, lr}
mov r9, r0
bl __lookup_processor_type
mov r0, r5
ldmfd {r4 - r6, r9, pc}
ENDPROC(lookup_processor_type)
/*
* 读取处理器ID寄存器 (CP#15, CR0), 并且查找编译时确定的处理器
* 支持列表. 注意:我们不能对__proc_info使用绝对地址,
* 因为我们还没有重新初始化页表(MMU已关闭,之前是解压时使用的1:1映射)。
* (我们不在正确的地址空间:内核是按虚拟地址(0xc00008000)编译的,
* 而现在我们运行在MMU关闭的情况下)。
* 我们必须计算偏移量。
*
* r9 = cpuid
* Returns:
* r3, r4, r6 被篡改
* r5 = proc_info 指针(物理地址空间)
* r9 = cpuid (保留)
*/
__CPUINIT
__lookup_processor_type:
adr r3, __lookup_processor_type_data @获取运行时的地址数据
ldmia r3, {r4 - r6} @获取编译时确定的地址数据(虚拟地址)
sub r3, r3, r4 @ 获取地址偏移 virt&phys(r3)
add r5, r5, r3 @ 将虚拟地址空间转换为物理地址空间
add r6, r6, r3 @ r5=__proc_info_begin r6=__proc_info_end
1: ldmia r5, {r3, r4} @ 获取proc_info_list结构体中的value, mask
and r4, r4, r9 @ 利用掩码处理从CP15获取的处理器ID
teq r3, r4 @ 对比编译时确定的处理器ID
beq 2f @ 若处理器ID匹配,返回
add r5, r5, #PROC_INFO_SZ @ 利用sizeof(proc_info_list)跳入下一个处理器ID的匹配
cmp r5, r6 @ 是否已经处理完proc_info_list数据
blo 1b @ 如果还有proc_info_list数据,再次检查匹配
mov r5, #0 @ 否则,编译的内核与此处理器不匹配,r5 = #0
2: mov pc, lr
ENDPROC(__lookup_processor_type)
/*
* 参见 中关于 __proc_info 结构体的信息.
*/
.align 2
.type __lookup_processor_type_data, %object
__lookup_processor_type_data:
.long .
.long __proc_info_begin
.long __proc_info_end
.size __lookup_processor_type_data, . - __lookup_processor_type_data
/*
* 处理器ID不匹配时的入口
* 如果启用了调试信息,会从consol打印提示信息
* 之后会进入__error的死循环
*/
__error_p:
#ifdef CONFIG_DEBUG_LL
adr r0, str_p1
bl printascii
mov r0, r9
bl printhex8
adr r0, str_p2
bl printascii
b __error
str_p1: .asciz "\nError: unrecognized/unsupported processor variant (0x"
str_p2: .asciz ").\n"
.align
#endif
ENDPROC(__error_p)
/*
* 出错时的死循环入口
*/
__error:
#ifdef CONFIG_ARCH_RPC
/*
* 出错时屏幕变红 - RiscPC only.
*/
mov r0, #0x02000000
mov r3, #0x11
orr r3, r3, r3, lsl #8
orr r3, r3, r3, lsl #16
str r3, [r0], #4
str r3, [r0], #4
str r3, [r0], #4
str r3, [r0], #4
#endif
1: mov r0, r0
b 1b
ENDPROC(__error)
Linux内核源码分析--内核启动之(2)Image内核启动(汇编部分)(Linux-3.0 ARMv7)
http://blog.chinaunix.net/uid-20543672-id-3019565.html