比特币交易是比特币系统中最重要的部分。根据比特币系统的设计原理,系统中任何其他的部分都是为了确保比特币交易可以被生成、能在比特币网络中得以传播和通过验证,并最终添加入全球比特币交易总账簿(比特币区块链)。比特币交易的本质是数据结构,这些数据结构中含有比特币交易参与者价值转移的相关信息。比特币区块链是一本全球复式记账总账簿,每个比特币交易都是在比特币区块链上的一个公开记录。
首先来看src/primitives/transaction.h
参考https://blog.csdn.net/pure_lady/article/details/77771392
字段尺寸 | 描述 | 数据类型 | 说明 |
---|---|---|---|
32 | hash | uint256 | 交易的哈希 |
4 | n | uint32_t | 指定tx输出的索引,第一笔输出的索引是0,以此类推 |
/** An outpoint - a combination of a transaction hash and an index n into its vout */
/* COutPoint主要用于在交易的输入CTxIn中,用来确定当前输出的来源,
*包括前一笔交易的hash,以及对应前一笔交易中的第几个输出的序列号*/
class COutPoint
{
public:
uint256 hash; //交易的哈希
uint32_t n; //对应的序列号
COutPoint() { SetNull(); }
COutPoint(uint256 hashIn, uint32_t nIn) { hash = hashIn; n = nIn; }
/*在类的主体中添加ADD_SERIALIZE_METHODS,可以使包装器作为成员,有三种方法,具体内容查看定义*/
ADD_SERIALIZE_METHODS; //用来序列化数据结构,方便存储和传输
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
READWRITE(hash);
READWRITE(n);
}
void SetNull() { hash.SetNull(); n = (uint32_t) -1; }
bool IsNull() const { return (hash.IsNull() && n == (uint32_t) -1); }
//重载符号
friend bool operator<(const COutPoint& a, const COutPoint& b)
{
int cmp = a.hash.Compare(b.hash);
return cmp < 0 || (cmp == 0 && a.n < b.n);
}
friend bool operator==(const COutPoint& a, const COutPoint& b)
{
return (a.hash == b.hash && a.n == b.n);
}
friend bool operator!=(const COutPoint& a, const COutPoint& b)
{
return !(a == b);
}
std::string ToString() const;
};
字段尺寸 | 描述 | 数据类型 | 说明 |
---|---|---|---|
36 | prevout | COutPoint | 对前一输出的引用,即需要出示那个账单的txid,也就是说,你花费的任何一笔钱都应该有人转给你过 |
? | scriptSig | CScript | 用于确认交易授权的计算脚本,对这笔交易的签名 |
4 | nSequence | uint32_t | 发送者定义的交易版本,用于在交易被写入block之前更改交易 |
? | scriptWitness | CScriptWitness | 隔离见证脚本 |
explicit
避免够高函数的参数自动转换为类对象的标识符,explicit关键字只对有一个参数的类构造函数有效,如果类的构造函数参数大于或等于2个时,是不会发生隐式转换的,explicit关键字也就无效了,存在一个例外,当除了第一个参数以外的其他参数都有默认值的时候,explicit关键字依然有效参考https://www.cnblogs.com/ymy124/p/3632634.html
/** An input of a transaction. It contains the location of the previous
* transaction's output that it claims and a signature that matches the
* output's public key.
*/
/*交易的输入,包含当前输入对应的前一笔交易输出的位置,以及花费前一笔输出需要的签名脚本*/
class CTxIn
{
public:
COutPoint prevout; //前一笔交易输出的位置
CScript scriptSig; //解锁脚本
uint32_t nSequence; //序列号
/* Setting nSequence to this value for every input in a transaction
* disables nLockTime. */
//如果一笔交易中的所有输入的nSequence都被设置为SEQUENCE_FINAL,那么禁用nLockTime
static const uint32_t SEQUENCE_FINAL = 0xffffffff;
/* Below flags apply in the context of BIP 68*/
/* If this flag set, CTxIn::nSequence is NOT interpreted as a
* relative lock-time. */
//这个标志应用于bip68的上下文中如果设置了这个变量,nSequence设置就与lock-time无关
static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31);
/* If CTxIn::nSequence encodes a relative lock-time and this flag
* is set, the relative lock-time has units of 512 seconds,
* otherwise it specifies blocks with a granularity of 1. */
//如果nSequence与lock-time相关并且设置了这个变量,那么相关的锁定时间就为512秒,
//或者1个区块的时间。
static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22);
/* If CTxIn::nSequence encodes a relative lock-time, this mask is
* applied to extract that lock-time from the sequence field. */
//如果nSequence与lock-time相关,那么这个变量就用来从序列字段中提取锁定时间
static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff;
/* In order to use the same number of bits to encode roughly the
* same wall-clock duration, and because blocks are naturally
* limited to occur every 600s on average, the minimum granularity
* for time-based relative lock-time is fixed at 512 seconds.
* Converting from CTxIn::nSequence to seconds is performed by
* multiplying by 512 = 2^9, or equivalently shifting up by
* 9 bits. */
//这里是为了保证等长的数据位
static const int SEQUENCE_LOCKTIME_GRANULARITY = 9;
CTxIn()
{
nSequence = SEQUENCE_FINAL;
}
//禁用隐式转换,构造函数必须明确使用当前形式
explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn=CScript(), uint32_t nSequenceIn=SEQUENCE_FINAL);
ADD_SERIALIZE_METHODS;//序列化
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
READWRITE(prevout);
READWRITE(*(CScriptBase*)(&scriptSig));
READWRITE(nSequence);
}
friend bool operator==(const CTxIn& a, const CTxIn& b)
{
return (a.prevout == b.prevout &&
a.scriptSig == b.scriptSig &&
a.nSequence == b.nSequence);
}
friend bool operator!=(const CTxIn& a, const CTxIn& b)
{
return !(a == b);
}
std::string ToString() const;
};
字段尺寸 | 描述 | 数据类型 | 说明 |
---|---|---|---|
8 | nValue | CAmount(int64_t) | 交易的比特币数量,单位聪(0.00000001) |
? | scriptPubKey | CScript | 锁定脚本,一般为对方的公钥,有一系列与交易相关的信息和操作组成 |
/** An output of a transaction. It contains the public key that the next input
* must be able to sign with to claim it.
*/
//交易的输出,包含金额和锁定脚本
class CTxOut
{
public:
CAmount nValue;//输出金额
CScript scriptPubKey;//锁定脚本
CTxOut()
{
SetNull();
}
CTxOut(const CAmount& nValueIn, CScript scriptPubKeyIn);
ADD_SERIALIZE_METHODS;
//内联方式提供见证数据(脚本)
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
READWRITE(nValue);
READWRITE(*(CScriptBase*)(&scriptPubKey));
}
void SetNull()
{
nValue = -1;
scriptPubKey.clear();
}
bool IsNull() const
{
return (nValue == -1);
}
uint256 GetHash() const;
//获取dust阈值,一笔交易如果交易费大于dust阈值,就会被认为是dust tx
CAmount GetDustThreshold(const CFeeRate &minRelayTxFee) const
{
// "Dust" is defined in terms of CTransaction::minRelayTxFee,
// which has units satoshis-per-kilobyte.
// If you'd pay more than 1/3 in fees
// to spend something, then we consider it dust.
// A typical spendable non-segwit txout is 34 bytes big, and will
// need a CTxIn of at least 148 bytes to spend:
// so dust is a spendable txout less than
// 546*minRelayTxFee/1000 (in satoshis).
// A typical spendable segwit txout is 31 bytes big, and will
// need a CTxIn of at least 67 bytes to spend:
// so dust is a spendable txout less than
// 294*minRelayTxFee/1000 (in satoshis).
/*"Dust"是从CTransaction::minRelayTxFee来定义的,单位是satoshis/千字节,
*如果在一笔交易中交易费占了1/3以上,那么我们认为该交易是"Dust"交易。
*一个典型的可花费的非隔离见证的txout是34字节大小,CTxIn至少需要148字节,
*因此dust交易的可花费支出少于546*minRelayTxFee/1000聪
*典型的隔离见证中dust交易的可花费支出少于294*minRelayTxFee/1000*/
if (scriptPubKey.IsUnspendable())//判断脚本格式是否正确
return 0;
size_t nSize = GetSerializeSize(SER_DISK, 0);
int witnessversion = 0;
std::vector<unsigned char> witnessprogram;
//判断是否支持隔离见证
if (scriptPubKey.IsWitnessProgram(witnessversion, witnessprogram)) {
// sum the sizes of the parts of a transaction input
// with 75% segwit discount applied to the script size.
nSize += (32 + 4 + 1 + (107 / WITNESS_SCALE_FACTOR) + 4);
} else {
nSize += (32 + 4 + 1 + 107 + 4); // the 148 mentioned above
}
return 3 * minRelayTxFee.GetFee(nSize);
}
bool IsDust(const CFeeRate &minRelayTxFee) const
{
return (nValue < GetDustThreshold(minRelayTxFee));
}
friend bool operator==(const CTxOut& a, const CTxOut& b)
{
return (a.nValue == b.nValue &&
a.scriptPubKey == b.scriptPubKey);
}
friend bool operator!=(const CTxOut& a, const CTxOut& b)
{
return !(a == b);
}
std::string ToString() const;
};
关于隔离见证,参考了《精通比特币》附录四 隔离见证
在引入“隔离见证”之前,每一个交易输入后面都跟着用来对其解锁的见证数据, 见证数据作为输入的一部分被内嵌其中。术语“隔离见证”( segregated witness), 或简称为“segwit”,简单理解就是将某个特定输出的签名分离开,或将某个特定输 入的脚本进行解锁。用最简单的形式来理解就是“分离解锁脚本”(separate scriptSig),或“分离签名”(separate signature)
因此,隔离见证就是比特币的一种结构性调整,旨在将见证数据部分从一笔交易 的 scriptSig(解锁脚本)字段移出至一个伴随交易的单独的见证数据结构。客户 端请求交易数据时可以选择要或不要该部分伴随的见证数据。
字段尺寸 | 描述 | 数据类型 | 说明 |
---|---|---|---|
4 | nVersion | int32_t | 交易数据格式版本 |
41+ | vin | std::vector
|
交易的输入 |
9+ | vout | std::vector
|
交易的输出 |
4 | nLockTime | uint32_t |
nLockTime应该理解为锁定交易的期限或者block数目,若该交易的所有输入CTxIn的nSequence字段为uint32_t的最大值(0xffffffff),则忽略该字段的逻辑检查。
当nSequence<0xffffffff,且nLockTime==0,该交易可以立即被打包
当nSequence<0xffffffff,且nLockTime!=0时:
// Threshold for nLockTime: below this value it is interpreted as block number,
// otherwise as UNIX timestamp.
static const unsigned int LOCKTIME_THRESHOLD = 500000000; // Tue Nov 5 00:53:20 1985 UTC
若nLockTime<500000000,则nLockTime代表区块数,该交易只能被打包进高度大于等于nLockTime的区块;
若nLockTime>500000000,则nLockTime代表unix时间戳,该交易只能等到当前时间大于等于nLockTime才能被打包进区块
/** The basic transaction that is broadcasted on the network and contained in
* blocks. A transaction can contain multiple inputs and outputs.
*在网络中被广播并打包进区块的基本交易。一个交易可以包含多个输入和输出
*/
class CTransaction
{
private:
/** Memory only. */
const uint256 hash;
public:
// Default transaction version.默认交易版本
static const int32_t CURRENT_VERSION=1;
// Changing the default transaction version requires a two step process: first
// adapting relay policy by bumping MAX_STANDARD_VERSION, and then later date
// bumping the default CURRENT_VERSION at which point both CURRENT_VERSION and
// MAX_STANDARD_VERSION will be equal.
static const int32_t MAX_STANDARD_VERSION=2;
// The local variables are made const to prevent unintended modification
// without updating the cached hash value. However, CTransaction is not
// actually immutable; deserialization and assignment are implemented,
// and bypass the constness. This is safe, as they update the entire
// structure, including the hash.
/*本地变量被定义为常量类型,从而避免无意识的修改了交易而没有更新缓存的hash值,
*但还是可以通过重新构造一个交易然后赋值给当前交易来进行修改,这样就更新了交易的所有内容*/
const int32_t nVersion;//版本
const std::vector vin;//交易输入
const std::vector vout;//交易输出
CTxWitness wit; // Not const: can change without invalidating the txid cache 可以更改
const uint32_t nLockTime;
/** Construct a CTransaction that qualifies as IsNull() */
CTransaction();
/** Convert a CMutableTransaction into a CTransaction. */
CTransaction(const CMutableTransaction &tx);
CTransaction& operator=(const CTransaction& tx);
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
SerializeTransaction(*this, s, ser_action, nType, nVersion);
if (ser_action.ForRead()) {
UpdateHash();
}
}
bool IsNull() const {
return vin.empty() && vout.empty();
}
const uint256& GetHash() const {
return hash;
}
// Compute a hash that includes both transaction and witness data
uint256 GetWitnessHash() const;
// Return sum of txouts.返回交易输出金额之和
CAmount GetValueOut() const;
// GetValueIn() is a method on CCoinsViewCache, because
// inputs must be known to compute value in.
// Compute priority, given priority of inputs and (optionally) tx size 计算优先级
double ComputePriority(double dPriorityInputs, unsigned int nTxSize=0) const;
// Compute modified tx size for priority calculation (optionally given tx size) 为优先级的估算计算修改的交易大小
unsigned int CalculateModifiedSize(unsigned int nTxSize=0) const;
bool IsCoinBase() const//判断是否CoinBase交易
{
return (vin.size() == 1 && vin[0].prevout.IsNull());
}
friend bool operator==(const CTransaction& a, const CTransaction& b)
{
return a.hash == b.hash;
}
friend bool operator!=(const CTransaction& a, const CTransaction& b)
{
return a.hash != b.hash;
}
std::string ToString() const;
void UpdateHash() const;
};
还定义了class CTxWitness
以及struct CMutableTransaction
,CMutableTransaction
是* A mutable version of CTransaction.*,其变量内容都可以修改,最后广播和网络中传输的类型都是CTransaction
.