python学习笔记(xpath、csv格式储存、词云wordcloud)

xpath简介

  1. 解析页面模块比较:
    • 正则表达式是进行内容匹配,将符合要求的内容全部获取;

    • xpath()能将字符串转化为标签,它会检测字符串内容是否为标签,但是不能检
      测出内容是否为真的标签;

    • Beautifulsoup是Python的一个第三方库,它的作用和 xpath 作用一样,都是用来解析html数据的相比之下;xpath的速度会快一点,因为xpath底层是用c来实现的

2.三者语法不同,正则表达式使用元字符,将所有获得内容与匹配条件进行匹配,
而xpath和bs4将获取的解析后的源码进行按条件筛选,筛选出想要的标签即根据标签属性来找到指定的标签,之后对标签进行对应内容获取;

xpath:全称XML PATH Language, 一种小型的查询语言;
支持的解析:
XML格式
html格式
通过元素,和属性进行导航

xpath常用规则及运算符

python学习笔记(xpath、csv格式储存、词云wordcloud)_第1张图片
python学习笔记(xpath、csv格式储存、词云wordcloud)_第2张图片

import lxml.etree as etree



# 1). 将html内容转化成xpath可以解析/匹配的格式;
html = """



    xpath测试
    


  • NO.1
  • NO.2
  • NO.3
  • one
  • two
""" selector = etree.HTML(html) # 2). # //: 对全文进行扫描 # //div # //div[@id="content"] str = selector.xpath('//div[@id="content"]/ul[@id="ul"]/li/text()') print(str) print(type(str)) # 需求: 获取文件中div的属性id为”url“里面的所有a标签的href属性 str1 = selector.xpath('//div[@id="url"]/a/@href') print(str1)

python学习笔记(xpath、csv格式储存、词云wordcloud)_第3张图片

xpath爬取mooc网课程

  • 爬取的链接: http://www.imooc.com/course/list
  • 爬取的内容: 课程链接, 课程的图片url, 课程的名称, 学习人数, 课程描述
  • 爬取的内容如何存储:
    • 文件(.csv, );
    • mysql数据库;
  • 分析爬取的信息;
    • 词云

csv格式储存

csv格式存储: csv文件格式是一种通用的电子表格和数据库导入导出格式。
xxx:xxx:xxx:xxx
xxx,xxx,xxx,xxx

# 读取csv文件
    import csv
    with open('some.csv', 'rb') as f:        # 采用b的方式处理可以省去很多问题
        reader = csv.reader(f)
        for row in reader:
            # do something with row, such as row[0],row[1]


    import csv
    with open('some.csv', 'wb') as f:      # 采用b的方式处理可以省去很多问题
        writer = csv.writer(f)
        writer.writerows(someiterable)
import csv

with open('doc/example.csv', 'w') as f:
    writer = csv.writer(f)
    # 将列表的每条数据依次写入csv文件, 并以逗号分隔
    writer.writerows([['1', '2', '3'], ['4', '5', '6']])

with open('doc/example.csv', 'r') as f:
    reader = csv.reader(f)
    for row in reader:
        print(row)

python学习笔记(xpath、csv格式储存、词云wordcloud)_第4张图片
python学习笔记(xpath、csv格式储存、词云wordcloud)_第5张图片

词云

安装
jieba(结巴):切割中文的模块;
wordcloud:
pillow: python3中专门用来处理图像的模块;
numpy:
matplotlib:

pip install wordcloud

绘制英文词云

import re

import jieba
from PIL import Image
from wordcloud import wordcloud
import numpy as np
# text = "马云曾公开表态称对钱没兴趣称其从来没碰过钱上了微博热搜"




#  实现处理英文的词云比较简单


# 1. 切割和处理英文字符,
data = []
with open('/tmp/passwd') as f:
    for line in f:
        result1 = re.split(r'\s|:|/', line)
        # 如果item存在数据并且不是空格或者数字, 则继续进行处理;
        result2 = [item for item in result1 if not re.findall(r'\s+|\d+', item) and item]
        # print(result2)
        data.extend(result2)


# 2). 打开图片, 获取图片的数据信息;
imgObj = Image.open('./doc/wordcloud.jpg')
img_mask = np.array(imgObj)
# print(img_mask)
#
# 3). 创建词云对象, 设置属性
wcObj = wordcloud.WordCloud(
    mask = img_mask,
    background_color="snow",
    min_font_size=5,
    max_font_size=50,
    width=1000,
    height=1000,
    )
# 4). 生成图片;
# 词云绘制时, 默认之处理字符串类型, 怎么分隔每个单词? 必须以逗号分隔符分割
wcObj.generate(",".join(data))
wcObj.to_file('doc/wcObj.png')

绘制中文词云

import re
import jieba
from PIL import Image
from wordcloud import wordcloud
import numpy as np

def gen_wordcloud(text, filename):


    # 1). 强调分割中有问题的词;
    jieba.suggest_freq(('微博'), True)
    jieba.suggest_freq(('热搜'), True)

    #  2). 难点: 如何切割中文, jieba, lcut
    result = jieba.lcut(text)
    print(result)

    # 绘制词云
    # 3). 打开图片, 获取图片的数据信息;
    imgObj = Image.open('./doc/wordcloud.jpg')
    img_mask = np.array(imgObj)
    # print(img_mask)
    # 4). 创建词云对象, 设置属性
    wcObj = wordcloud.WordCloud(
        mask = img_mask,   # 数据如何填充到图片
        background_color="snow",  # 背景颜色
        font_path="/usr/share/fonts/wqy-zenhei/wqy-zenhei.ttc",  # 如果是中文, 指定字体库(fc-list :lang=zh)
        min_font_size=5,  # 图片中最小的字体大小
        max_font_size=50,   # 图片中最小的字体大小
        width=1000,  # 图片宽度
        height=1000, # 高
        )
    # 5). 生成图片;
    # 词云绘制时, 默认之处理字符串类型, 怎么分隔每个单词? 必须以逗号分隔符分割
    wcObj.generate(",".join(result))
    wcObj.to_file(filename)


if __name__ == '__main__':
    text = "马云曾公开表态称对钱没兴趣称其从来没碰过钱上了微博热搜"
    filename = 'doc/wcObj.png'
    gen_wordcloud(text, filename)

mooc网课程爬取

1.爬取信息

import requests
import lxml.etree as etree
def get_content(url):
    #爬取页面内容
    try:
        user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36"
        response = requests.get(url, headers={'User-Agent': user_agent})
        response.raise_for_status()  # 如果返回的状态码不是200, 则抛出异常;
        response.encoding = response.apparent_encoding  # 判断网页的编码格式, 便于respons.text知道如何解码;
    except Exception as e:
        print("爬取错误")
    else:

        print(response.url)
        print("爬取成功!")
        return response.content

def parser_content(html):
    #分析页面并获取所需信息
    selector = etree.HTML(html)  #将页面转换为xpath可以解析的格式
    #获取信息
    courseDetails = selector.xpath('//div[@class="course-card-container"]')
    for courseDetail in courseDetails:
        name = courseDetail.xpath('.//h3[@class="course-card-name"]/text()')[0]
        studentNum = courseDetail.xpath('.//span/text()')[1]
        courseInfo = courseDetail.xpath('.//p[@class="course-card-desc"]/text()')[0]
        print(name,studentNum,courseInfo)
        courseUrl = 'http://www.imooc.com'+courseDetail.xpath('.//a/@href')[0]
        print(courseUrl)
        courseImgUrl = 'http:'+courseDetail.xpath('.//img/@src')[0]
if __name__ == '__main__':
    url = 'http://www.imooc.com/course/list'
    html = get_content(url)
    parser_content(html)

python学习笔记(xpath、csv格式储存、词云wordcloud)_第6张图片
2.保存信息

import requests
import lxml.etree as etree
def get_content(url):
    #爬取页面内容
    try:
        user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36"
        response = requests.get(url, headers={'User-Agent': user_agent})
        response.raise_for_status()  # 如果返回的状态码不是200, 则抛出异常;
        response.encoding = response.apparent_encoding  # 判断网页的编码格式, 便于respons.text知道如何解码;
    except Exception as e:
        print("爬取错误")
    else:

        print(response.url)
        print("爬取成功!")
        return response.content

def parser_content(html):
    #分析页面并获取所需信息
    selector = etree.HTML(html)  #将页面转换为xpath可以解析的格式
    #获取信息
    courseinfos = [] #用于储存爬取数据
    courseDetails = selector.xpath('//div[@class="course-card-container"]')
    for courseDetail in courseDetails:
        name = courseDetail.xpath('.//h3[@class="course-card-name"]/text()')[0]
        studentNum = courseDetail.xpath('.//span/text()')[1]
        courseInfo = courseDetail.xpath('.//p[@class="course-card-desc"]/text()')[0]
        # print(name,studentNum,courseInfo)
        courseUrl = 'http://www.imooc.com'+courseDetail.xpath('.//a/@href')[0]
        # print(courseUrl)
        courseImgUrl = 'http:'+courseDetail.xpath('.//img/@src')[0]
        courseinfos.append((name,studentNum,courseInfo,courseUrl,courseImgUrl))
    return courseinfos
#将数据以csv格式保存
def save_csv(courseInfo):
    import csv
    with open('mooc.csv','w') as f:
        writer = csv.writer(f)
        writer.writerows(courseInfo)
    print('csv文件保存成功')
#将数据以json格式保存
def save_json(courseInfo):
    import json
    with open('mooc.json','w',encoding='utf-8') as f:
        for item in courseInfo:
            item = {
                'name':item[0],
                'studentNum': item[1],
                'courseInfo': item[2],
                'courseUrl': item[3],
                'courseImgUrl': item[4]
            }
            # ensure_ascii: 如果有中文, 则设置为False, 表示使用Unicode编码, 中文不会乱码;
            #  indent=4: 所金为4个空格, 便于阅读;
            jsonitem = json.dumps(item, ensure_ascii=False, indent=4)
            f.write(jsonitem+'\n')
    print('json文件保存成功')
if __name__ == '__main__':
    url = 'http://www.imooc.com/course/list'
    html = get_content(url)
    courseInfos = parser_content(html)
    print(courseInfos)
    save_json(courseInfos)
    save_csv(courseInfos)

python学习笔记(xpath、csv格式储存、词云wordcloud)_第7张图片python学习笔记(xpath、csv格式储存、词云wordcloud)_第8张图片
python学习笔记(xpath、csv格式储存、词云wordcloud)_第9张图片
3.分析清洗数据

def anlyseCourse(filename):
    wordcloudString = ''
    with open(filename) as f:
        reader = csv.reader(f)
        pattern = re.compile(r'[\u4e00-\u9fa5]+|[a-zA-Z0-9]+')
        for item in reader:
            name = ''.join(re.findall(pattern,item[0]))
            detail = ''.join(re.findall(pattern,item[2]))
            wordcloudString += name
            wordcloudString += detail
        print(re.sub(r'学习|使用|入门|基础|实现|掌握|教程','',wordcloudString))

python学习笔记(xpath、csv格式储存、词云wordcloud)_第10张图片
4.词云绘制,总结

import csv
import re

import jieba
import numpy as np
import requests
import lxml.etree as etree
from PIL import Image
from wordcloud import wordcloud


def get_content(url):
    #爬取页面内容
    try:
        user_agent = "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36"
        response = requests.get(url, headers={'User-Agent': user_agent})
        response.raise_for_status()  # 如果返回的状态码不是200, 则抛出异常;
        response.encoding = response.apparent_encoding  # 判断网页的编码格式, 便于respons.text知道如何解码;
    except Exception as e:
        print("爬取错误")
    else:

        print(response.url)
        print("爬取成功!")
        return response.content

def parser_content(html):
    #分析页面并获取所需信息
    selector = etree.HTML(html)  #将页面转换为xpath可以解析的格式
    #获取信息
    courseinfos = [] #用于储存爬取数据
    courseDetails = selector.xpath('//div[@class="course-card-container"]')
    for courseDetail in courseDetails:
        name = courseDetail.xpath('.//h3[@class="course-card-name"]/text()')[0]
        studentNum = courseDetail.xpath('.//span/text()')[1]
        courseInfo = courseDetail.xpath('.//p[@class="course-card-desc"]/text()')[0]
        # print(name,studentNum,courseInfo)
        courseUrl = 'http://www.imooc.com'+courseDetail.xpath('.//a/@href')[0]
        # print(courseUrl)
        courseImgUrl = 'http:'+courseDetail.xpath('.//img/@src')[0]
        courseinfos.append((name,studentNum,courseInfo,courseUrl,courseImgUrl))
    return courseinfos
#将数据以csv格式保存
def save_csv(courseInfo):
    import csv
    with open('mooc.csv','w') as f:
        writer = csv.writer(f)
        writer.writerows(courseInfo)
    print('csv文件保存成功')
#将数据以json格式保存
def save_json(courseInfo):
    import json
    with open('mooc.json','w',encoding='utf-8') as f:
        for item in courseInfo:
            item = {
                'name':item[0],
                'studentNum': item[1],
                'courseInfo': item[2],
                'courseUrl': item[3],
                'courseImgUrl': item[4]
            }
            # ensure_ascii: 如果有中文, 则设置为False, 表示使用Unicode编码, 中文不会乱码;
            #  indent=4: 所金为4个空格, 便于阅读;
            jsonitem = json.dumps(item, ensure_ascii=False, indent=4)
            f.write(jsonitem+'\n')
    print('json文件保存成功')
def moocSpider():
    # 1). 爬取课程信息的第一页
    url = "http://www.imooc.com/course/list"
    html = get_content(url=url)
    courseInfos = parser_content(html)  # 列表, 保存第一也的课程信息;
    # 2). 如果有下一页信息, 则继续爬取课程内容;
    #     如果没有下一页信息, 则跳出循环, 将课程信息保存到文件中.....;
    #
    while True:
        # 获取是否拥有下一页?
        selector = etree.HTML(html)
        nextPage = selector.xpath('//a[contains(text(), "下一页")]/@href')
        print(nextPage)
        # 只爬取前2页, 用于测试;
        if nextPage and ('3' not in nextPage[0]):
        # if nextPage:
            url = "http://www.imooc.com" + nextPage[0]
            html = get_content(url=url)
            otherCourseInfo = parser_content(html)
            courseInfos += otherCourseInfo  # 把其他页获取的页面信息追加到变量中;
        else:
            print("全部爬取结束......")
            break

    # print(courseInfos)
    save_csv(courseInfos)
    save_json(courseInfos)

    # #  1). 课程信息有多页, url规则:
    # """
    # 两种url均可:
    # http://www.imooc.com/course/list?page=28
    # http://www.imooc.com/course/list?page=1
    #
    # http://www.imooc.com/course/list/2
    # http://www.imooc.com/course/list/28
    # """
    #
    # # 2).  什么时候爬取结束? 没有下一页的时候
    # """
    # # 有下一页:
    #     下一页
    #
    # # 没有下一页:
    #     下一页
    #
    # """
    #
    #


def anlyseCourse(filename):
    wordcloudString = ''
    with open(filename) as f:
        reader = csv.reader(f)
        pattern = re.compile(r'[\u4e00-\u9fa5]+|[a-zA-Z0-9]+')
        for item in reader:
            name = ''.join(re.findall(pattern,item[0]))
            detail = ''.join(re.findall(pattern,item[2]))
            wordcloudString += name
            wordcloudString += detail
        return re.sub(r'(学习|使用|入门|基础|实现|掌握|教程)','',wordcloudString)

def gen_wordcloud(text, filename):

    result = jieba.lcut(text)

    # 绘制词云
    # 3). 打开图片, 获取图片的数据信息;
    imgObj = Image.open('wordcloud.jpg')
    img_mask = np.array(imgObj)
    # print(img_mask)
    # 4). 创建词云对象, 设置属性
    wcObj = wordcloud.WordCloud(
        mask=img_mask,  # 数据如何填充到图片
        background_color="snow",  # 背景颜色
        font_path="/usr/share/fonts/wqy-zenhei/wqy-zenhei.ttc",  # 如果是中文, 指定字体库(fc-list :lang=zh)
        min_font_size=5,  # 图片中最小的字体大小
        max_font_size=50,  # 图片中最小的字体大小
        width=1000,  # 图片宽度
        height=1000,  # 高
    )
    # 5). 生成图片;
    # 词云绘制时, 默认之处理字符串类型, 怎么分隔每个单词? 必须以逗号分隔符分割
    wcObj.generate(",".join(result))
    wcObj.to_file(filename)
    print("生成图片%s成功......." %(filename))



if __name__ == '__main__':
    #爬取数据信息
    moocSpider()
    #分析爬取数据,绘制词云
    text = anlyseCourse('mooc.csv')

    filename = 'mooc.png'
    gen_wordcloud(text,filename)

python学习笔记(xpath、csv格式储存、词云wordcloud)_第11张图片python学习笔记(xpath、csv格式储存、词云wordcloud)_第12张图片

你可能感兴趣的:(笔记)