Python爬虫商业项目实战,python中Counter用法实例

爬虫案例,对美国总统的一篇演讲稿分析

要点:
1、Counter用法:统计分析,类似于tf-itf词频统计 常用的函数有subtract update
2、python中'delimer'.JOIN(sentence)的使用 对sentence按照delimer分割
from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import string
from collections import Counter

Python爬虫商业项目实战,python中Counter用法实例_第1张图片
def cleanSentence(sentence):
sentence=sentence.split(' ')
#string.puctuaction+string.whitespace获取所有的字符,strip去掉word左右的字符
sentence=[word.strip(string.punctuation+string.whitespace) for word in sentence]
#word长度大于1 或者word是'a'或者'i'的收录到word中 并返回
sentence=[word for word in sentence if (len(word)>1 or (word.lower()=='a' or word.lower()=='i'))]
print('cleanSentence>',sentence)
return sentence

def cleanInput(content):
content=content.upper()
#用空格替换\n
content=re.sub('\n',' ',content)
#按utf-8编码
content=bytes(content,'utf-8')
#按照ASCII解码,解码报错直接忽略:排除掉非ASCII编码的字符,只适合在英文环境下分析
content=content.decode('ascii','ignore')
#按照". "分割成句子
sentence=content.split('. ')
print('cleanInput>',sentence)
return [cleanSentence(sentence) for sentence in sentence]

def getNgramFromSentence(content,n):
output=[]
#
for i in range(len(content)-n+1):
output.append(content[i:i+n])
print('getNgramFromSentence>',output)
return output

def getNgrams(content,n):
content=cleanInput(content)
#print('content>',content)
ngrams=Counter()
ngrams_list=[]
for sentence in content:
newNgrams=[' '.join(ngram) for ngram in getNgramFromSentence(sentence,2)]
#print('newgream>',newNgrams)
ngrams_list.extend(newNgrams)
ngrams.update(newNgrams)
return(ngrams)

content=str(urlopen('http://pythonscraping.com/files/inaugurationSpeech.txt').read(),'utf-8')
ngrams=getNgrams(content,2)
print(ngrams)

counter用法案例

Python爬虫商业项目实战,python中Counter用法实例_第2张图片

你可能感兴趣的:(Python爬虫商业项目实战,python中Counter用法实例)