python Django 实现自定义prometheus export

Prometheus 是一个 Metrics 监控系统,与 Kubernetes 同属 CNCF(Cloud Native Computing Foundation),它已经成为炙手可热的 Kubernetes 生态圈中的核心监控系统。

Prometheus 所有的Metrics 都是通过组件export主动pull获取到的。

Prometheus提供4种类型Metrics:CounterGaugeSummaryHistogram

Counter可以增长,并且在程序重启的时候会被重设为0,常被用于任务个数,总处理时间,错误个数等只增不减的指标。

Gauge与Counter类似,唯一不同的是Gauge数值可以减少,常被用于温度、利用率等指标。

Summary/Histogram概念比较复杂,对于我来说目前没有使用场景,暂无了解。本文主要使用Gauge实现获取es性能指标。

备注:本文主要使用Prometheus-operater部署形式

views.py

from django.shortcuts import render
import prometheus_client
from prometheus_client import Counter,Gauge
from prometheus_client.core import CollectorRegistry
from django.views.generic import View
from django.http import HttpResponse
import random
from .util import esApi

REGISTRY = CollectorRegistry(auto_describe=False)
esStatus = Gauge("elasticsearch", "elasticsearch status is:", ["node", "class"],
                 registry=REGISTRY)  # 数值可大可小

class ApiResponse(View):
    def get(self,request):
        es_obj = esApi.esApi()
        es_result = es_obj.es_status()
        for node, values in es_result.items():
            for key,value in values.items():
                esStatus.labels(node,key).set(value)
        return HttpResponse(prometheus_client.generate_latest(REGISTRY),content_type="text/plain")

esApi.py

from elasticsearch import Elasticsearch

class esApi():
    def __init__(self):
        self.es = Elasticsearch([{'host': '10.30.30.25', 'port': 9200}], timeout=3600)
        self.result = dict()
        self.Value = dict()
        self.esStatus = dict()
    def es_status(self):
       for key,value in self.es.nodes.stats()['nodes'].items():
           self.Value['es_heap_used_percent'] = value['jvm']['mem']['heap_used_percent']           #75的时候进行GC   节点总是大约75%,那你节点正在承受内存方面的压力,这是一个告警,预示着你不久就会出现慢GC heap使用率一直在85%
           self.Value['es_heap_used_in_bytes'] = value['jvm']['mem']['heap_used_in_bytes']
           self.Value['es_young_collection_count'] = value['jvm']['gc']['collectors']['young']['collection_count']
           self.Value['es_young_collection_millis'] = value['jvm']['gc']['collectors']['young']['collection_time_in_millis']
           self.Value['es_old_collection_count'] = value['jvm']['gc']['collectors']['old']['collection_count']
           self.Value['es_old_collection_millis'] = value['jvm']['gc']['collectors']['old']['collection_time_in_millis']
           self.Value['es_index_total'] = value['indices']['indexing']['index_total']
           self.Value['index_time_in_millis'] = value['indices']['indexing']['index_time_in_millis']
           self.result[key] = self.Value
       return self.result
    def cluster_status(self):
        esStatus = self.es.cluster.health()
        self.esStatus['es_status'] = esStatus['status']
        self.esStatus['es_unassigned_shards'] = esStatus['unassigned_shards']
        return self.esStatus


在使用prometheus-operator的情况下需要编写servicemonitor来配置target

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  labels:
     app: autoexport
  name: autoexport
  namespace: monitoring
spec:
  selector:
    matchLabels:
      app: autoexport
  endpoints:
  - port: metrics
    scheme: http
    interval: 30s
    path: '/api/autoMetric/Apimetric'

k8s-deployment

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: autoexport
  namespace: monitoring
spec:
  replicas: 1
  strategy:
    rollingUpdate:
      maxSurge: 1
      maxUnavailable: 0
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: autoexport
    spec:
      containers:
        - name: autoexport
          image: autoexport:v0.0.1
          ports:
            - containerPort: 8000
          livenessProbe:
            tcpSocket:
              port: 8000
            initialDelaySeconds: 600
            periodSeconds: 10
            timeoutSeconds: 1
          readinessProbe:
            tcpSocket:
              port: 8000
            initialDelaySeconds: 10
            periodSeconds: 5
            timeoutSeconds: 1
          resources:
            limits:
              memory: "1Gi"
            requests:
              memory: "256Mi"
---
apiVersion: v1
kind: Service
metadata:
  name: autoexport
  namespace: monitoring
  labels:
    app: autoexport
spec:
  ports:
  - name: autometrics
    port: 8000
    targetPort: 8000
  selector:
    app: autoexport

 部署完成之后 到web层查看效果:

python Django 实现自定义prometheus export_第1张图片

你可能感兴趣的:(linux运维,自动化运维)