机器学习中一些基本的算法源码实现及注释详情

decision_tree的源码实现:

#coding:utf-8
from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import preprocessing
from sklearn import tree
from sklearn.externals.six import StringIO


# 读取csv数据
data = open(r'F:\study\code\python\machine_learning\decision_tree\AllElectronics.csv', 'rb')
# csv.reader可以按行读取内容
# csv_reader把每一行数据转化成了一个list,list中每个元素是一个字符串。
reader = csv.reader(data)
headers = reader.next()
# print(headers)

# 装取feature,即特征值的informatiom
featureLIst = []
# 存储最后一行的值
labelList = []

for Row in reader:
    # 每一个Row表示表格中的一行
    # print(Row)
    # labelList中存储的是每一行的最后一个值
    labelList.append(Row[len(Row) - 1])
    # RowDict存储的是从age到credit_rating的值
    RowDict = {}
    # 接着遍历每一行里面的特征值
    for i in range(1, len(Row) - 1):
        # print(Row[i])
        # RowDict的key对应的就是从每一行中取出来的值
        RowDict[headers[i]] = Row[i]
        # print("RowDict:" + RowDict)
    featureLIst.append(RowDict)
# 输出的应该是一个list of dictionary,之所以转换为这种形式是为了便于利用python中的模块,可以把这种list of dictionary转换成0-1的格式
print(featureLIst)

# 实例化,DicVectorizer是一个对象
vec = DictVectorizer()
# 转换成我们需要的dummy variable格式
dummyX = vec.fit_transform(featureLIst).toarray()
print("dummyX:" + str(dummyX))
print(vec.get_feature_names())

print ("labelList:" + str(labelList))
# 在python中提供了一种把class labels转换成0-1格式的方法
lb = preprocessing.LabelBinarizer()
dummyY = lb.fit_transform(labelList)
print ("dummyY:" + str(dummyY))

# 利用sklearn创建决策树
# criterion='entropy'指的是利用信息熵为标准创建决策树
clf = tree.DecisionTreeClassifier(criterion='entropy')
clf = clf.fit(dummyX, dummyY)
print("clf:" + str(clf))

# 将决策树可视化,保存为dot文件
with open("allElectronicInformationGainOri.dot", "w") as f:
    f = tree.export_graphviz(clf, feature_names=vec.get_feature_names(), out_file=f)
# 原表格中第一行的数据
oneRowX = dummyX[0, :]
print("oneRowX:" + str(oneRowX))

# 将第一行的数据修改年纪:youth->middle_aged,然后进行测试
newRowX = oneRowX
newRowX[0] = 1
newRowX[2] = 0
print("newRowX:" + str(newRowX))

predictedY = clf.predict(newRowX)
print("predictedY: " + str(predictedY))

csv_file:

机器学习中一些基本的算法源码实现及注释详情_第1张图片

dot文件:


机器学习中一些基本的算法源码实现及注释详情_第2张图片

机器学习中一些基本的算法源码实现及注释详情_第3张图片

pdf文件:

机器学习中一些基本的算法源码实现及注释详情_第4张图片

K_means算法:

源码:

# coding:utf-8
from numpy import *

"""
Code for hierarchical clustering, modified from
Programming Collective Intelligence by Toby Segaran
(O'Reilly Media 2007, page 33).
"""


# 结点定义
class cluster_node:
    def __init__(self, vec, left=None, right=None, distance=0.0, id=None, count=1):
        self.left = left
        self.right = right
        self.vec = vec
        self.id = id
        self.distance = distance
        self.count = count  # only used for weighted average


# 求两种不同距离的方法
def L2dist(v1, v2):
    return sqrt(sum((v1 - v2) ** 2))


def L1dist(v1, v2):
    return sum(abs(v1 - v2))


# def Chi2dist(v1,v2):
#     return sqrt(sum((v1-v2)**2))


def hcluster(features, distance=L2dist):
    # cluster the rows of the "features" matrix
    distances = {}
    currentclustid = -1

    # clusters are initially just the individual rows
    clust = [cluster_node(array(features[i]), id=i) for i in range(len(features))]

    while len(clust) > 1:
        lowestpair = (0, 1)
        closest = distance(clust[0].vec, clust[1].vec)

        # loop through every pair looking for the smallest distance
        for i in range(len(clust)):
            for j in range(i + 1, len(clust)):
                # distances is the cache of distance calculations
                if (clust[i].id, clust[j].id) not in distances:
                    distances[(clust[i].id, clust[j].id)] = distance(clust[i].vec, clust[j].vec)

                d = distances[(clust[i].id, clust[j].id)]

                if d < closest:
                    closest = d
                    lowestpair = (i, j)

        # calculate the average of the two clusters
        mergevec = [(clust[lowestpair[0]].vec[i] + clust[lowestpair[1]].vec[i]) / 2.0 \
                    for i in range(len(clust[0].vec))]

        # create the new cluster
        newcluster = cluster_node(array(mergevec), left=clust[lowestpair[0]],
                                  right=clust[lowestpair[1]],
                                  distance=closest, id=currentclustid)

        # cluster ids that weren't in the original set are negative
        currentclustid -= 1
        del clust[lowestpair[1]]
        del clust[lowestpair[0]]
        clust.append(newcluster)

    return clust[0]


def extract_clusters(clust, dist):
    # extract list of sub-tree clusters from hcluster tree with distance    clusters = {}
    if clust.distance < dist:
        # we have found a cluster subtree
        return [clust]
    else:
        # check the right and left branches
        cl = []
        cr = []
        if clust.left != None:
            cl = extract_clusters(clust.left, dist=dist)
        if clust.right != None:
            cr = extract_clusters(clust.right, dist=dist)
        return cl + cr


def get_cluster_elements(clust):
    # return ids for elements in a cluster sub-tree
    if clust.id >= 0:
        # positive id means that this is a leaf
        return [clust.id]
    else:
        # check the right and left branches
        cl = []
        cr = []
        if clust.left != None:
            cl = get_cluster_elements(clust.left)
        if clust.right != None:
            cr = get_cluster_elements(clust.right)
        return cl + cr


def printclust(clust, labels=None, n=0):
    # indent to make a hierarchy layout
    for i in range(n): print ' ',
    if clust.id < 0:
        # negative id means that this is branch
        print '-'
    else:
        # positive id means that this is an endpoint
        if labels == None:
            print clust.id
        else:
            print labels[clust.id]

    # now print the right and left branches
    if clust.left != None: printclust(clust.left, labels=labels, n=n + 1)
    if clust.right != None: printclust(clust.right, labels=labels, n=n + 1)


def getheight(clust):
    # Is this an endpoint? Then the height is just 1
    if clust.left == None and clust.right == None: return 1

    # Otherwise the height is the same of the heights of
    # each branch
    return getheight(clust.left) + getheight(clust.right)


def getdepth(clust):
    # The distance of an endpoint is 0.0
    if clust.left == None and clust.right == None: return 0

    # The distance of a branch is the greater of its two sides
    # plus its own distance
    return max(getdepth(clust.left), getdepth(clust.right)) + clust.distance



实例测试源码:

# coding:utf-8
import numpy as np


def k_means(X, K, maxIt):
    """
    :param x: 数据集
    :param k: 分类数目
    :param maxIt: 最大迭代更新次数
    """
    # numPoints表示行数,numDim表示列数(维度)
    numPoints, numDim = X.shape
    # 新建一个数据集,比X多一列,用于存储分类
    dataSet = np.zeros((numPoints, numDim + 1))
    dataSet[:, : -1] = X
    # 随机选取K个中心点作为初始化的中心点
    centroids = dataSet[np.random.randint(numPoints, size=K), :]
    # centroids = dataSet[0:2, :]
    # 给中心点的最后一列随机赋值
    centroids[:, -1] = range(1, K + 1)
    # iterations :循环次数
    iterations = 0
    oldCentroids = None

    # Run the main k-means algorithm
    while not shouldStop(oldCentroids, centroids, iterations, maxIt):
        print "iteration: \n", iterations
        print "dataSet: \n", dataSet
        print "centroids: \n", centroids
        # Save old centroids for convergence test. Book keeping.
        # 使用np.copy()改变一个的值不会影响另外一个的值,即两个变量不指向同一内存空间
        oldCentroids = np.copy(centroids)
        iterations += 1

        # Assign labels to each datapoint based on centroids
        # 更新分类标签
        updateLabels(dataSet, centroids)

        # Assign centroids based on datapoint labels
        # 更新中心点
        centroids = getCentroids(dataSet, K)

    # We can get the labels too by calling getLabels(dataSet, centroids)
    return dataSet


# Function: Should Stop
# -------------
# Returns True or False if k-means is done. K-means terminates either
# because it has run a maximum number of iterations OR the centroids
# stop changing.
def shouldStop(oldCentroids, centroids, iterations, maxIt):
    if iterations > maxIt:
        return True
    # 比较两者值是否相等
    return np.array_equal(oldCentroids, centroids)
    # Function: Get Labels


# -------------
# Update a label for each piece of data in the dataset.
def updateLabels(dataSet, centroids):
    # For each element in the dataset, chose the closest centroid.
    # Make that centroid the element's label.
    numPoints, numDim = dataSet.shape
    for i in range(0, numPoints):
        dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids)


def getLabelFromClosestCentroid(dataSetRow, centroids):
    label = centroids[0, -1];
    minDist = np.linalg.norm(dataSetRow - centroids[0, :-1])
    for i in range(1, centroids.shape[0]):
        # np.linalg.norm用于计算距离
        dist = np.linalg.norm(dataSetRow - centroids[i, :-1])
        if dist < minDist:
            minDist = dist
            label = centroids[i, -1]
    print "minDist:", minDist
    return label


# Function: Get Centroids
# -------------
# Returns k random centroids, each of dimension n.
def getCentroids(dataSet, k):
    # Each centroid is the geometric mean of the points that
    # have that centroid's label. Important: If a centroid is empty (no points have
    # that centroid's label) you should randomly re-initialize it.
    result = np.zeros((k, dataSet.shape[1]))
    for i in range(1, k + 1):
        oneCluster = dataSet[dataSet[:, -1] == i, :-1]
        """
            mean()函数功能:求取均值
            经常操作的参数为axis,以m * n矩阵举例:
            axis 不设置值,对 m*n 个数求均值,返回一个实数
            axis = 0:压缩行,对各列求均值,返回 1* n 矩阵
            axis =1 :压缩列,对各行求均值,返回 m *1 矩阵
        """
        result[i - 1, :-1] = np.mean(oneCluster, axis=0)
        result[i - 1, -1] = i

    return result


x1 = np.array([1, 1])
x2 = np.array([2, 1])
x3 = np.array([4, 3])
x4 = np.array([5, 4])
# 把四个点纵向排列,组成一个矩阵
testX = np.vstack((x1, x2, x3, x4))

result = k_means(testX, 2, 10)
print "final result:"
print result











运行结果:

iteration: 
0
dataSet: 
[[1. 1. 0.]
 [2. 1. 0.]
 [4. 3. 0.]
 [5. 4. 0.]]
centroids: 
[[4. 3. 1.]
 [5. 4. 2.]]
minDist: 3.60555127546
minDist: 2.82842712475
minDist: 0.0
minDist: 0.0
iteration: 
1
dataSet: 
[[1. 1. 1.]
 [2. 1. 1.]
 [4. 3. 1.]
 [5. 4. 2.]]
centroids: 
[[2.33333333 1.66666667 1.        ]
 [5.         4.         2.        ]]
minDist: 1.490711985
minDist: 0.7453559925
minDist: 1.41421356237
minDist: 0.0
iteration: 
2
dataSet: 
[[1. 1. 1.]
 [2. 1. 1.]
 [4. 3. 2.]
 [5. 4. 2.]]
centroids: 
[[1.5 1.  1. ]
 [4.5 3.5 2. ]]
minDist: 0.5
minDist: 0.5
minDist: 0.707106781187
minDist: 0.707106781187
final result:
[[1. 1. 1.]
 [2. 1. 1.]
 [4. 3. 2.]
 [5. 4. 2.]]


进程已结束,退出代码0


KMN算法:

# coding:utf-8
# 读取数据
import csv
import random
import math
# operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为一些序号
# operator.itemgetter函数获取的不是值,而是定义了一个函数,通过该函数作用到对象上才能获取值。
import operator


# 装载数据集
def loadDataset(filename, split, trainingSet = [], testSet = []):
    """
    filename: 需要装载的数据集路径及名称
    split: 将数据集分为两部分----trainingSet和testSet
    trainingSet: 训练集
    testSet: 测试集
    """
    with open(filename, "rb") as csvfile:
        # 读取所有的行
        lines = csv.reader(csvfile)
        # 转化为list的数据结构
        dataset = list(lines)
        # dataset的格式是列表中存在列表的格式,列表中的每一个子列表表示原数据中的一行数据
        # print "dataset的格式:", dataset

        # 把数据集分为两部分,分别装到训练集和测试集里面去
        # x表示行
        for x in range(len(dataset) - 1):
            for y in range(4):
                dataset[x][y] = float(dataset[x][y])
            # random.random()的范围是[0, 1)
            if random.random() < split:
                trainingSet.append(dataset[x])
            else:
                testSet.append(dataset[x])

        print "trainingSet", trainingSet
        print "testSet", testSet


# 计算EuclideanDistance
# 参数为两个实例以及维度,返回值是euclideanDistance
# pow()平方,sqrt()开方
def euclideanDistance(instance1, instance2, length):
    distance = 0
    for x in range(length):
        distance += pow((instance1[x] - instance2[x]), 2)
    return math.sqrt(distance)


# 返回离目标点最近的K个点
# testInstance指的是测试集中的一个实例(数据)
def getNeighbors(trainingSet, testInstance, k):
    # 初始化distances作为容器装所有的距离
    distances = []
    # length指的是测试实例的维度
    length = len(testInstance) - 1
    # 计算测试实例到训练集中各点的距离的列表集合
    for x in range(len(trainingSet)):
        dist = euclideanDistance(testInstance, trainingSet[x], length)
        distances.append((trainingSet[x], dist))
    # 此时distances的格式[([5.1, 3.5, 1.4, 0.2, 'Iris-setosa'], 4.459820624195552), ([4.9, 3.0, 1.4, 0.2, 'Iris-setosa'], 4.498888751680798),。。。]
    # print "distances列表:", distances
    # 此处key=operator.itemgetter(1)的作用是根据第2个域(距离)进行排序,默认为升序
    distances.sort(key=operator.itemgetter(1))
    neighbors = []
    # 取前k个距离最近的点
    for x in range(k):
        neighbors.append(distances[x][0])
    # print "neighbors:", neighbors
    # neighbors: [[6.5, 3.2, 5.1, 2.0, 'Iris-virginica'], [6.7, 3.3, 5.7, 2.5, 'Iris-virginica'],[6.5, 3.0, 5.8, 2.2, 'Iris-virginica']]
    return neighbors


# 在K个点中,根据少数服从多数原则,将目标点进行归类
def getResponse(neighbors):
    classVotes = {}
    for x in range(len(neighbors)):
        # neighbors[x][-1]指的是距离最近的每一种花的品种
        response = neighbors[x][-1]
        # 统计距离最近的花里面每一品种的个数
        if response in classVotes:
            classVotes[response] += 1
        else:
            classVotes[response] = 1
        # reverse参数,是一个bool变量,表示升序还是降序排列,默认为false(升序排列),定义为True时将按降序排列
        sortedNotes = sorted(classVotes.iteritems(), key=operator.itemgetter(1), reverse=True)
        return sortedNotes[0][0]


# 测试准确率
def getAccuracy(testSet, predictions):
    correct = 0
    for x in range(len(testSet)):
        # -1指的是最后一个值,也就是花的类别
        if testSet[x][-1] == predictions[x]:
            correct += 1
    return (correct/float(len(testSet))) * 100.0


# 主函数
def main():
    trainingSet = []
    testSet = []
    # 0.67的作用:把2/3的数据划分为训练集,把1/3的数据划分为测试集
    split = 0.67
    # 调用loadDataset函数
    loadDataset(r'F:\study\code\python\machine_learning\KNN\irisdata.txt', split, trainingSet, testSet)
    # repr() 转化为供解释器读取的形式。
    print 'TrainSet: ' + repr(len(trainingSet))
    print 'TestSet: ' + repr(len(testSet))
    # generate predictions
    predictions = []
    k = 3
    for x in range(len(testSet)):
        neighbors = getNeighbors(trainingSet, testSet[x], k)
        result = getResponse(neighbors)
        predictions.append(result)
        print("> predicted= " + repr(result) + ', actual=' + repr(testSet[x][-1]))
    # 准确率
    accuracy = getAccuracy(testSet, predictions)
    print("Accuracy: " + repr(accuracy) + "%")

if __name__ == '__main__':
    main()




运行结果:

trainingSet [[5.1, 3.5, 1.4, 0.2, 'Iris-setosa'], [4.9, 3.0, 1.4, 0.2, 'Iris-setosa'], [4.6, 3.4, 1.4, 0.3, 'Iris-setosa'], [5.0, 3.4, 1.5, 0.2, 'Iris-setosa'], [4.4, 2.9, 1.4, 0.2, 'Iris-setosa'], [5.4, 3.7, 1.5, 0.2, 'Iris-setosa'], [4.8, 3.4, 1.6, 0.2, 'Iris-setosa'], [4.3, 3.0, 1.1, 0.1, 'Iris-setosa'], [5.8, 4.0, 1.2, 0.2, 'Iris-setosa'], [5.4, 3.9, 1.3, 0.4, 'Iris-setosa'], [5.1, 3.5, 1.4, 0.3, 'Iris-setosa'], [5.7, 3.8, 1.7, 0.3, 'Iris-setosa'], [5.1, 3.8, 1.5, 0.3, 'Iris-setosa'], [4.6, 3.6, 1.0, 0.2, 'Iris-setosa'], [5.1, 3.3, 1.7, 0.5, 'Iris-setosa'], [4.8, 3.4, 1.9, 0.2, 'Iris-setosa'], [5.0, 3.4, 1.6, 0.4, 'Iris-setosa'], [5.2, 3.5, 1.5, 0.2, 'Iris-setosa'], [5.2, 3.4, 1.4, 0.2, 'Iris-setosa'], [4.7, 3.2, 1.6, 0.2, 'Iris-setosa'], [4.8, 3.1, 1.6, 0.2, 'Iris-setosa'], [5.2, 4.1, 1.5, 0.1, 'Iris-setosa'], [5.5, 4.2, 1.4, 0.2, 'Iris-setosa'], [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'], [5.5, 3.5, 1.3, 0.2, 'Iris-setosa'], [4.4, 3.0, 1.3, 0.2, 'Iris-setosa'], [5.1, 3.4, 1.5, 0.2, 'Iris-setosa'], [5.0, 3.5, 1.3, 0.3, 'Iris-setosa'], [4.5, 2.3, 1.3, 0.3, 'Iris-setosa'], [4.4, 3.2, 1.3, 0.2, 'Iris-setosa'], [5.0, 3.5, 1.6, 0.6, 'Iris-setosa'], [5.1, 3.8, 1.9, 0.4, 'Iris-setosa'], [5.1, 3.8, 1.6, 0.2, 'Iris-setosa'], [4.6, 3.2, 1.4, 0.2, 'Iris-setosa'], [5.0, 3.3, 1.4, 0.2, 'Iris-setosa'], [6.9, 3.1, 4.9, 1.5, 'Iris-versicolor'], [5.5, 2.3, 4.0, 1.3, 'Iris-versicolor'], [6.5, 2.8, 4.6, 1.5, 'Iris-versicolor'], [5.7, 2.8, 4.5, 1.3, 'Iris-versicolor'], [4.9, 2.4, 3.3, 1.0, 'Iris-versicolor'], [5.2, 2.7, 3.9, 1.4, 'Iris-versicolor'], [5.0, 2.0, 3.5, 1.0, 'Iris-versicolor'], [5.9, 3.0, 4.2, 1.5, 'Iris-versicolor'], [6.1, 2.9, 4.7, 1.4, 'Iris-versicolor'], [5.6, 2.9, 3.6, 1.3, 'Iris-versicolor'], [6.7, 3.1, 4.4, 1.4, 'Iris-versicolor'], [5.6, 3.0, 4.5, 1.5, 'Iris-versicolor'], [5.8, 2.7, 4.1, 1.0, 'Iris-versicolor'], [6.2, 2.2, 4.5, 1.5, 'Iris-versicolor'], [5.6, 2.5, 3.9, 1.1, 'Iris-versicolor'], [6.1, 2.8, 4.0, 1.3, 'Iris-versicolor'], [6.1, 2.8, 4.7, 1.2, 'Iris-versicolor'], [6.4, 2.9, 4.3, 1.3, 'Iris-versicolor'], [6.6, 3.0, 4.4, 1.4, 'Iris-versicolor'], [6.8, 2.8, 4.8, 1.4, 'Iris-versicolor'], [6.7, 3.0, 5.0, 1.7, 'Iris-versicolor'], [5.7, 2.6, 3.5, 1.0, 'Iris-versicolor'], [5.5, 2.4, 3.8, 1.1, 'Iris-versicolor'], [5.5, 2.4, 3.7, 1.0, 'Iris-versicolor'], [5.4, 3.0, 4.5, 1.5, 'Iris-versicolor'], [6.0, 3.4, 4.5, 1.6, 'Iris-versicolor'], [6.7, 3.1, 4.7, 1.5, 'Iris-versicolor'], [6.3, 2.3, 4.4, 1.3, 'Iris-versicolor'], [5.6, 3.0, 4.1, 1.3, 'Iris-versicolor'], [5.5, 2.5, 4.0, 1.3, 'Iris-versicolor'], [6.1, 3.0, 4.6, 1.4, 'Iris-versicolor'], [5.7, 2.9, 4.2, 1.3, 'Iris-versicolor'], [6.2, 2.9, 4.3, 1.3, 'Iris-versicolor'], [5.1, 2.5, 3.0, 1.1, 'Iris-versicolor'], [5.8, 2.7, 5.1, 1.9, 'Iris-virginica'], [7.1, 3.0, 5.9, 2.1, 'Iris-virginica'], [7.6, 3.0, 6.6, 2.1, 'Iris-virginica'], [4.9, 2.5, 4.5, 1.7, 'Iris-virginica'], [7.3, 2.9, 6.3, 1.8, 'Iris-virginica'], [6.5, 3.2, 5.1, 2.0, 'Iris-virginica'], [6.4, 2.7, 5.3, 1.9, 'Iris-virginica'], [5.7, 2.5, 5.0, 2.0, 'Iris-virginica'], [6.4, 3.2, 5.3, 2.3, 'Iris-virginica'], [7.7, 3.8, 6.7, 2.2, 'Iris-virginica'], [7.7, 2.6, 6.9, 2.3, 'Iris-virginica'], [7.7, 2.8, 6.7, 2.0, 'Iris-virginica'], [6.3, 2.7, 4.9, 1.8, 'Iris-virginica'], [6.7, 3.3, 5.7, 2.1, 'Iris-virginica'], [7.2, 3.2, 6.0, 1.8, 'Iris-virginica'], [6.2, 2.8, 4.8, 1.8, 'Iris-virginica'], [6.4, 2.8, 5.6, 2.1, 'Iris-virginica'], [7.2, 3.0, 5.8, 1.6, 'Iris-virginica'], [7.4, 2.8, 6.1, 1.9, 'Iris-virginica'], [7.9, 3.8, 6.4, 2.0, 'Iris-virginica'], [6.4, 2.8, 5.6, 2.2, 'Iris-virginica'], [7.7, 3.0, 6.1, 2.3, 'Iris-virginica'], [6.3, 3.4, 5.6, 2.4, 'Iris-virginica'], [6.4, 3.1, 5.5, 1.8, 'Iris-virginica'], [6.0, 3.0, 4.8, 1.8, 'Iris-virginica'], [6.9, 3.1, 5.4, 2.1, 'Iris-virginica'], [6.7, 3.1, 5.6, 2.4, 'Iris-virginica'], [6.8, 3.2, 5.9, 2.3, 'Iris-virginica'], [6.7, 3.3, 5.7, 2.5, 'Iris-virginica'], [6.7, 3.0, 5.2, 2.3, 'Iris-virginica'], [6.3, 2.5, 5.0, 1.9, 'Iris-virginica'], [6.5, 3.0, 5.2, 2.0, 'Iris-virginica'], [6.2, 3.4, 5.4, 2.3, 'Iris-virginica']]

testSet [[4.7, 3.2, 1.3, 0.2, 'Iris-setosa'], [4.6, 3.1, 1.5, 0.2, 'Iris-setosa'], [5.0, 3.6, 1.4, 0.2, 'Iris-setosa'], [5.4, 3.9, 1.7, 0.4, 'Iris-setosa'], [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'], [4.8, 3.0, 1.4, 0.1, 'Iris-setosa'], [5.7, 4.4, 1.5, 0.4, 'Iris-setosa'], [5.4, 3.4, 1.7, 0.2, 'Iris-setosa'], [5.1, 3.7, 1.5, 0.4, 'Iris-setosa'], [5.0, 3.0, 1.6, 0.2, 'Iris-setosa'], [5.4, 3.4, 1.5, 0.4, 'Iris-setosa'], [5.0, 3.2, 1.2, 0.2, 'Iris-setosa'], [4.9, 3.1, 1.5, 0.1, 'Iris-setosa'], [4.8, 3.0, 1.4, 0.3, 'Iris-setosa'], [5.3, 3.7, 1.5, 0.2, 'Iris-setosa'], [7.0, 3.2, 4.7, 1.4, 'Iris-versicolor'], [6.4, 3.2, 4.5, 1.5, 'Iris-versicolor'], [6.3, 3.3, 4.7, 1.6, 'Iris-versicolor'], [6.6, 2.9, 4.6, 1.3, 'Iris-versicolor'], [6.0, 2.2, 4.0, 1.0, 'Iris-versicolor'], [5.9, 3.2, 4.8, 1.8, 'Iris-versicolor'], [6.3, 2.5, 4.9, 1.5, 'Iris-versicolor'], [6.0, 2.9, 4.5, 1.5, 'Iris-versicolor'], [5.8, 2.7, 3.9, 1.2, 'Iris-versicolor'], [6.0, 2.7, 5.1, 1.6, 'Iris-versicolor'], [5.5, 2.6, 4.4, 1.2, 'Iris-versicolor'], [5.8, 2.6, 4.0, 1.2, 'Iris-versicolor'], [5.0, 2.3, 3.3, 1.0, 'Iris-versicolor'], [5.6, 2.7, 4.2, 1.3, 'Iris-versicolor'], [5.7, 3.0, 4.2, 1.2, 'Iris-versicolor'], [5.7, 2.8, 4.1, 1.3, 'Iris-versicolor'], [6.3, 3.3, 6.0, 2.5, 'Iris-virginica'], [6.3, 2.9, 5.6, 1.8, 'Iris-virginica'], [6.5, 3.0, 5.8, 2.2, 'Iris-virginica'], [6.7, 2.5, 5.8, 1.8, 'Iris-virginica'], [7.2, 3.6, 6.1, 2.5, 'Iris-virginica'], [6.8, 3.0, 5.5, 2.1, 'Iris-virginica'], [5.8, 2.8, 5.1, 2.4, 'Iris-virginica'], [6.5, 3.0, 5.5, 1.8, 'Iris-virginica'], [6.0, 2.2, 5.0, 1.5, 'Iris-virginica'], [6.9, 3.2, 5.7, 2.3, 'Iris-virginica'], [5.6, 2.8, 4.9, 2.0, 'Iris-virginica'], [6.1, 3.0, 4.9, 1.8, 'Iris-virginica'], [6.3, 2.8, 5.1, 1.5, 'Iris-virginica'], [6.1, 2.6, 5.6, 1.4, 'Iris-virginica'], [6.9, 3.1, 5.1, 2.3, 'Iris-virginica'], [5.8, 2.7, 5.1, 1.9, 'Iris-virginica']]
TrainSet: 102
TestSet: 47
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-setosa', actual='Iris-setosa'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-virginica', actual='Iris-versicolor'
> predicted= 'Iris-virginica', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-virginica', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-versicolor', actual='Iris-versicolor'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-versicolor', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
> predicted= 'Iris-virginica', actual='Iris-virginica'
Accuracy: 91.48936170212765%


进程已结束,退出代码0

KMN第二种实现方法:直接利用sklearn中的相关方法实现:

# coding:utf-8
from sklearn import neighbors
from sklearn import datasets

# 创建一个名为knn的分类器
knn = neighbors.KNeighborsClassifier()

iris = datasets.load_iris()
print iris

# 建立模型,第一个参数代表特征值的矩阵,第二个参数代表每一行对应的分类
knn.fit(iris.data, iris.target)

# 预测一个花的品种
predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])

print predictedLabel

运行结果:

{'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='|S10'), 'data': array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2],
       [7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3],
       [6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]]), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'DESCR': 'Iris Plants Database\n====================\n\nNotes\n-----\nData Set Characteristics:\n    :Number of Instances: 150 (50 in each of three classes)\n    :Number of Attributes: 4 numeric, predictive attributes and the class\n    :Attribute Information:\n        - sepal length in cm\n        - sepal width in cm\n        - petal length in cm\n        - petal width in cm\n        - class:\n                - Iris-Setosa\n                - Iris-Versicolour\n                - Iris-Virginica\n    :Summary Statistics:\n\n    ============== ==== ==== ======= ===== ====================\n                    Min  Max   Mean    SD   Class Correlation\n    ============== ==== ==== ======= ===== ====================\n    sepal length:   4.3  7.9   5.84   0.83    0.7826\n    sepal width:    2.0  4.4   3.05   0.43   -0.4194\n    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)\n    petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)\n    ============== ==== ==== ======= ===== ====================\n\n    :Missing Attribute Values: None\n    :Class Distribution: 33.3% for each of 3 classes.\n    :Creator: R.A. Fisher\n    :Donor: Michael Marshall (MARSHALL%[email protected])\n    :Date: July, 1988\n\nThis is a copy of UCI ML iris datasets.\nhttp://archive.ics.uci.edu/ml/datasets/Iris\n\nThe famous Iris database, first used by Sir R.A Fisher\n\nThis is perhaps the best known database to be found in the\npattern recognition literature.  Fisher\'s paper is a classic in the field and\nis referenced frequently to this day.  (See Duda & Hart, for example.)  The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant.  One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\nReferences\n----------\n   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"\n     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n     Mathematical Statistics" (John Wiley, NY, 1950).\n   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.\n     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.\n   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n     Structure and Classification Rule for Recognition in Partially Exposed\n     Environments".  IEEE Transactions on Pattern Analysis and Machine\n     Intelligence, Vol. PAMI-2, No. 1, 67-71.\n   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions\n     on Information Theory, May 1972, 431-433.\n   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II\n     conceptual clustering system finds 3 classes in the data.\n   - Many, many more ...\n', 'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']}
[0]


进程已结束,退出代码0


NeuralNetwork算法:

源码:

# coding:utf-8
import numpy as np
# 下载数据集
from sklearn.datasets import load_digits
# 通过矩阵显示结果
from sklearn.metrics import confusion_matrix, classification_report
# 转换数字0-9的数据类型为python可接受的数据类型
from sklearn.preprocessing import LabelBinarizer
from neuralNetwork import NeuralNetwork
# 数据集拆分为训练集和测试集
from sklearn.model_selection import  train_test_split


digits = load_digits()
X = digits.data
y = digits.target
# print X
# print y
X -= X.min()
X /= X.max()
# print X
# print y

nn = NeuralNetwork([64, 100, 10], 'logistic')
X_train, X_test, y_train, y_test = train_test_split(X, y)
label_train = LabelBinarizer().fit_transform(y_train)
lable_test = LabelBinarizer().fit_transform(y_test)
print 'start fitting'
nn.fit(X_train, label_train, epochs=3000)
predictions = []
for i in range(X_test.shape[0]):
    o = nn.predict(X_test[i])
    predictions.append(np.argmax(o))
print confusion_matrix(y_test, predictions)
print classification_report(y_test, predictions)





运行结果:

start fitting
[[41  0  0  0  2  0  0  0  0  0]
 [ 0 39  0  0  0  0  0  0  0  2]
 [ 0  0 31  0  0  0  0  0  0  0]
 [ 0  1  2 37  0  0  0  0  2  0]
 [ 0  4  0  0 47  0  0  0  1  0]
 [ 0  0  0  0  1 41  0  0  0  4]
 [ 0  2  0  0  0  0 43  0  1  0]
 [ 0  0  0  0  1  0  0 49  1  1]
 [ 0  3  0  0  0  2  0  0 40  2]
 [ 0  0  0  0  0  0  0  1  1 48]]
             precision    recall  f1-score   support


          0       1.00      0.95      0.98        43
          1       0.80      0.95      0.87        41
          2       0.94      1.00      0.97        31
          3       1.00      0.88      0.94        42
          4       0.92      0.90      0.91        52
          5       0.95      0.89      0.92        46
          6       1.00      0.93      0.97        46
          7       0.98      0.94      0.96        52
          8       0.87      0.85      0.86        47
          9       0.84      0.96      0.90        50


avg / total       0.93      0.92      0.93       450




进程已结束,退出代码0


neuralNetWork.py

# coding:utf-8
# numpy库提供了一些基于矩阵的科学运算
import numpy as np


# 直接调用numpy库里面的tanh双曲函数
def tanh(x):
    return np.tanh(x)


# 定义tanh的一阶导数函数
# tanh(x)的导数为1-tanh(x)的平方
def tan_deriv(x):
    return 1.0 - np.tanh(x) * np.tanh(x)


# 定义逻辑函数
# exp(x)方法返回值为e的x次方
def logistic(x):
    return 1/(1 + np.exp(-x))


# 定义逻辑函数
# 逻辑函数f(x)的导数为:f(x)*(1-(f(x))
def logistic_derivative(x):
    return logistic(x) * (1 - logistic(x))


class NeuralNetwork():
    def __init__(self, layers, activation='tanh'):
        """
        \layers: 表示每层有多少神经元,用列表表示
        activation: 用户指定采用哪种模式,默认为tanh
        """
        if activation == 'logistic':
            self.activation = logistic
            self.activation_deriv = logistic_derivative
        else:
            self.activation = tanh
            self.activation_deriv = tan_deriv
        self.weights = []
        # 对权重进行随机赋值
        for i in range(1, len(layers) - 1):
            self.weights.append((2 * np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1) * 0.25)
            self.weights.append((2 * np.random.random((layers[i] + 1, layers[i + 1])) - 1) * 0.25)

    def fit(self, X, y, learning_rate=0.2, epochs=10000):
        """
            X指的是训练集,每一行对应一个实例,列数表示特征值的维度。y指的是classlabel(分类标记)
            learn_rate指的是学习率,一般取0.2
            epochs指的是利用抽样的方法来更新,训练次数,这里设置为10000次
        """
        # 将X的数据类型改为numpy,最少是一个二维的数组
        X = np.atleast_2d(X)
        # 初始化一个矩阵,假设X是一个10 x 100的矩阵.X.shape()返回值为(10,100)
        temp = np.ones([X.shape[0], X.shape[1] + 1])
        # 冒号指的是取所有的行,列数从第一列到除了最后一列
        temp[:, 0:-1] = X
        X = temp
        # y指的是分类标记,数据类型转换
        y = np.array(y)
        for k in range(epochs):
            i = np.random.randint(X.shape[0])
            # a表示随机从X中抽取的一行实例对神经网络进行更新
            a = [X[i]]
            # 正向更新
            # going forward network, for each layer
            for l in range(len(self.weights)):
                # Computer the node value for each layer (O_i) using activation function
                a.append(self.activation(np.dot(a[l], self.weights[l])))

            # Computer the error at the top layer
            error = y[i] - a[-1]
            # For output layer, Err calculation (delta is updated error)
            deltas = [error * self.activation_deriv(a[-1])]
            # 反向更新
            # we need to begin at the second to last layer
            for l in range(len(a) - 2, 0, -1):
                # Compute the updated error (i,e, deltas) for each node going from top layer to input layer
                deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l]))
            deltas.reverse()
            for i in range(len(self.weights)):
                layer = np.atleast_2d(a[i])
                delta = np.atleast_2d(deltas[i])
                self.weights[i] += learning_rate * layer.T.dot(delta)

    def predict(self, x):
        x = np.array(x)
        temp = np.ones(x.shape[0] + 1)
        temp[0:-1] = x
        a = temp
        for l in range(0, len(self.weights)):
            a = self.activation(np.dot(a, self.weights[l]))
        return a





调用neuralNetwork中的NeuralNetwork:

from neuralNetwork import NeuralNetwork
import numpy as np

nn = NeuralNetwork([2, 2, 1], 'tanh')
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(X, y)
for i in [[0, 0], [0, 1], [1, 0], [1, 1]]:
    print i, nn.predict(i)

运行结果:

[0, 0] [-0.00015573]
[0, 1] [0.99842087]
[1, 0] [0.99845495]
[1, 1] [0.03373141]


进程已结束,退出代码0




Regression_Problem(回归问题):

Simple_Regression_problem

# coding:utf-8
import numpy as np


# x, y为两个列表
def fitSLR(x, y):
    n = len(x)
    # 分母
    dinominator = 0
    # 分子
    numerator = 0
    for i in range(0, n):
        # np.mean()为numpy里面计算均值的方法
        numerator += (x[i] - np.mean(x))*(y[i] - np.mean(y))
        dinominator += (x[i] - np.mean(x))**2
    b1 = numerator/float(dinominator)
    b0 = np.mean(y)/float(np.mean(x))
    return b0, b1


def predict(x, b0, b1):
    return b0 + x*b1

x = [1, 3, 2, 1, 3]
y = [14, 24, 18, 17, 27]

b0, b1 = fitSLR(x, y)

print "intercept:", b0, " slope:", b1

x_test = 6

y_test = predict(x_test, b0, b1)

print "y_test:", y_test



运行结果:

intercept: 10.0  slope: 5.0
y_test: 40.0


进程已结束,退出代码0


计算皮尔逊系数的代码实现:

# coding:utf-8
import numpy as np
import math


def computeCorrelation(X, Y):
    # 计算均值
    x_bar = np.mean(X)
    y_bar = np.mean(Y)
    SSR = 0
    varX = 0
    varY = 0
    for i in range(0, len(X)):
        diffXx_bar = X[i] - x_bar
        diffYy_bar = Y[i] - y_bar
        SSR += (diffXx_bar * diffYy_bar)
        varX += diffXx_bar ** 2
        varY += diffYy_bar ** 2

    SST = math.sqrt(varX * varY)
    return SSR / SST


testX = [1, 3, 8, 7, 9]
testY = [10, 12, 24, 21, 34]

print computeCorrelation(testX, testY)



运行结果:

0.940310076545


进程已结束,退出代码0


计算R的平方值的代码实现:

# coding:utf-8
import numpy as np
import math


def computeCorrelation(X, Y):
    # 计算均值
    x_bar = np.mean(X)
    y_bar = np.mean(Y)
    SSR = 0
    varX = 0
    varY = 0
    for i in range(0, len(X)):
        diffXx_bar = X[i] - x_bar
        diffYy_bar = Y[i] - y_bar
        SSR += (diffXx_bar * diffYy_bar)
        varX += diffXx_bar ** 2
        varY += diffYy_bar ** 2

    SST = math.sqrt(varX * varY)
    return SSR / SST


def polyfit(x, y, degree):
    results = {}
    # 当传入三个参数之后,自动将回归方程计算出来,返回值为相关系数
    # x:自变量     y:因变量     degree表示的是最高次数
    coeffs = np.polyfit(x, y, degree)
    results['polynormol'] = coeffs.tolist()

    # p相当于直线方程
    p = np.poly1d(coeffs)
    # 计算y_hat
    yhat = p(x)
    ybar = np.sum(y)/len(y)
    ssreg = np.sum((yhat-ybar)**2)
    print "ssreg: ", ssreg
    sstot = np.sum((y-ybar)**2)
    print "sstot: ", sstot
    results['determination'] = ssreg/sstot
    return results


testX = [1, 3, 8, 7, 9]
testY = [10, 12, 24, 21, 34]

print "r: ", computeCorrelation(testX, testY)
print "R^2: ", str(computeCorrelation(testX, testY)**2)

print polyfit(testX, testY, 1)


运行结果:

r:  0.940310076545
R^2:  0.8841830400518192
ssreg:  333.360169492
sstot:  377
{'polynormol': [2.65677966101695, 5.322033898305075], 'determination': 0.8842444814098822}


进程已结束,退出代码0


multiple_Regression_problem:

# coding:utf-8
from numpy import genfromtxt
import numpy as np
from sklearn import datasets, linear_model

# 把csv文件转换成矩阵格式
dataPath = r"F:\study\code\python\machine_learning\Regression_problem\Delivery.csv"
deliveryData = genfromtxt(dataPath, delimiter=',')

print 'data:'
print deliveryData
# 第一个冒号表示提取所有行,第二个冒号表示提取第一列到倒数第一列但不包括最后一列
X = deliveryData[:, :-1]
Y = deliveryData[:, -1]
# print "X:", X
# print "Y:", Y
# 建立模型
regr = linear_model.LinearRegression()
regr.fit(X, Y)
print "coefficients:"
# 平面系数
print regr.coef_
print "intercept:"
# 截距或截面
print regr.intercept_

xPredicted = [[102, 6]]
yPredicted = regr.predict(xPredicted)
print "predicted y:"
print yPredicted


delivery.csv:

机器学习中一些基本的算法源码实现及注释详情_第5张图片


运行结果:

data:
[[100.    4.    9.3]
 [ 50.    3.    4.8]
 [100.    4.    8.9]
 [100.    2.    6.5]
 [ 50.    2.    4.2]
 [ 80.    2.    6.2]
 [ 75.    3.    7.4]
 [ 65.    4.    6. ]
 [ 90.    3.    7.6]
 [ 90.    2.    6.1]]
coefficients:
[0.0611346  0.92342537]
intercept:
-0.868701466782
predicted y:
[10.90757981]


进程已结束,退出代码0


multiple_Regression_problem(数据集特征值中含有分类值的问题):

解决方法:将某些数据进行特殊处理,即dummy化。

# coding:utf-8
from numpy import genfromtxt
import numpy as np
from sklearn import datasets, linear_model

# 把csv文件转换成矩阵格式
dataPath = r"F:\study\code\python\machine_learning\Regression_problem\Delivery_Dummy.csv"
deliveryData = genfromtxt(dataPath, delimiter=',')

print 'data:'
print deliveryData
# 第一个冒号表示提取所有行,第二个冒号表示提取第一列到倒数第一列但不包括最后一列
X = deliveryData[:, :-1]
Y = deliveryData[:, -1]
# print "X:", X
# print "Y:", Y
# 建立模型
regr = linear_model.LinearRegression()
regr.fit(X, Y)
print "coefficients:"
# 平面系数
print regr.coef_
print "intercept:"
# 截距或截面
print regr.intercept_

xPredicted = [[102, 6, 1, 0, 0]]
yPredicted = regr.predict(xPredicted)
print "predicted y:"
print yPredicted



运行结果:

Delivery_Dummy.csv(已处理好的):C-E列为原数据中的处理结果

机器学习中一些基本的算法源码实现及注释详情_第6张图片

data:
[[100.    4.    0.    1.    0.    9.3]
 [ 50.    3.    1.    0.    0.    4.8]
 [100.    4.    0.    1.    0.    8.9]
 [100.    2.    0.    0.    1.    6.5]
 [ 50.    2.    0.    0.    1.    4.2]
 [ 80.    2.    0.    1.    0.    6.2]
 [ 75.    3.    0.    1.    0.    7.4]
 [ 65.    4.    1.    0.    0.    6. ]
 [ 90.    3.    1.    0.    0.    7.6]
 [ 90.    2.    0.    0.    1.    6.1]]
coefficients:
[ 0.05520428  0.6952821  -0.16572633  0.58179313 -0.4160668 ]
intercept:
0.209160181582
predicted y:
[9.84596304]


进程已结束,退出代码0


SVM算法:

# coding:utf-8
from sklearn import svm
# svm实现太过复杂,现在只谈怎么使用


x = [[1, 1], [2, 0], [2, 3]]
# y指的是分类的标记,在python通常用0或者1分类
y = [0, 0, 1]
clf = svm.SVC(kernel='linear')
clf.fit(x, y)

print(clf)
# 找出支持向量点
print(clf.support_vectors_)
# 找出支持向量点的下标
print(clf.support_)
# 分别找出超平面两边各有几个支持向量点
print(clf.n_support_)

# 预测
print(clf.predict([[2, .1]]))


运行结果:


SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
[[1. 1.]
 [2. 3.]]
[0 2]
[1 1]
[0]


进程已结束,退出代码0

example_1:

# coding:utf-8
# python中支持科学计算的一个包
import numpy as np
# python中提供的可以作图的包
import pylab as pl
from sklearn import svm

# 创建40个点
np.random.seed(0)
# 随机生成一个矩阵,通过正态分布的方法随机产生一些数,矩阵有二十行两列,[2, 2]表示均值是2,方差也是2,这样产生的点恰好可以被一条直线分开成两部分
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
# print X
# 将这些点进行归类
Y = [0] * 20 + [1] * 20
# print Y
# Y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

# 建立svm模型
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)
# print clf.support_vectors_
# clf.support_vectors_指的是支持向量点,在本实例中有三个
w = clf.coef_[0]
# print w
# w = [0.90230696 0.64821811]
# 斜率
a = -w[0] / w[1]
# print a
# 随机生成50个连续的等间隔数列点,-5和5分别表示开头和结尾,可加入第三个参数指定元素个数
xx = np.linspace(-5, 5)
# print xx
# - (clf.intercept_[0])/w[1]指的是截距
yy = a * xx - (clf.intercept_[0])/w[1]

# 找到直线上下方和两个支持向量点相切的直线方程
b = clf.support_vectors_[0]
yy_down = a*xx + (b[1] - a*b[0])
b = clf.support_vectors_[-1]
yy_up = a*xx + (b[1] - a*b[0])

# 作图
# 三条直线
pl.plot(xx, yy, 'k-')
pl.plot(xx, yy_down, 'k--')
pl.plot(xx, yy_up, 'k--')
# 画点
pl.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1],
           s=80, facecolors='none')
pl.scatter(X[:, 0], X[:, 1], c=Y, cmap=pl.cm.Paired)

pl.axis('tight')
pl.show()






运行结果:

机器学习中一些基本的算法源码实现及注释详情_第7张图片


example_2:

# coding:utf-8
# 用来计时
from time import time
# 提供了通用的日志系统
import logging
# 将识别的人脸打印出来,这个包提供了绘图的功能
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
# 用来下载人脸而定数据集
from sklearn.datasets import fetch_lfw_people
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.svm import SVC


"""
    日志一共分成5个等级,从低到高分别是:DEBUG INFO WARNING ERROR CRITICAL。
    DEBUG:详细的信息,通常只出现在诊断问题上
    INFO:确认一切按预期运行
    WARNING:一个迹象表明,一些意想不到的事情发生了,或表明一些问题在不久的将来(例如。磁盘空间低”)。这个软件还能按预期工作。
    ERROR:更严重的问题,软件没能执行一些功能
    CRITICAL:一个严重的错误,这表明程序本身可能无法继续运行

    logging.basicConfig函数中,可以指定日志的输出格式format,这个参数可以输出很多有用的信息。
        %(levelno)s: 打印日志级别的数值
        %(levelname)s: 打印日志级别名称
        %(pathname)s: 打印当前执行程序的路径,其实就是sys.argv[0]
        %(filename)s: 打印当前执行程序名
        %(funcName)s: 打印日志的当前函数
        %(lineno)d: 打印日志的当前行号
        %(asctime)s: 打印日志的时间
        %(thread)d: 打印线程ID
        %(threadName)s: 打印线程名称
        %(process)d: 打印进程ID
        %(message)s: 打印日志信息
"""
# 把程序进展信息打印出来
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

# 下载人脸数据集
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

# 返回数据集的图片数量以及h,w的值(用于绘图)
n_samples, h, w = lfw_people.images.shape

# X是特征向量的矩阵,每一行是个实例,每一列是个特征值
X = lfw_people.data
# n_features表示的就是维度
# 维度:每个人会提取多少的特征值
n_features = X.shape[1]

# 提取每个实例对应每个人脸,目标分类标记,不同的人的身份
y = lfw_people.target
target_names = lfw_people.target_names
# 多少行,shape就是多少行,多少个人,多少类
n_classes = target_names.shape[0]

print("Total dataset size:")
# 实例的个数
print("n_samples:%d" % n_samples)
# 特征向量的维度
print("n_features:%d" % n_features)
# 总共有多少人
print("n_classes:%d" % n_classes)

# 下面开始拆分数据,分成训练集和测试集,有个现成的函数,通过调用train_test_split;来分成四部分,即训练集的特征向量,测试集的特征向量,训练集对应的归类标记,测试集对应的归类标记
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.25)

# 数据降维,因为特征值的维度还是比较高
n_components = 150
print("Extracting the top %d eigenfaces from %d faces"
      % (n_components, X_train.shape[0]))
# 记录时间
t0 = time()
# 将高维特征向量降低为低维的
pca = PCA(n_components=n_components, whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))
# 对于人脸的一张照片上提取的特征值名为eigenfaces
eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the inpyt data on the eigenfaces orthonormal basis")
t0 = time()
# 特征量中训练集所有的特征向量通过pca转换成更低维的矩阵
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))
print "*"*100
# print "X_test_pca",X_test_pca
# print "X_train_pca",X_train_pca

print("Fitting the classifier to the training set")
t0 = time()
# param_grid把参数设置成了不同的值,C:权重;gamma:多少的特征点将被使用,因为我们不知道多少特征点最好,选择了不同的组合
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
              'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1],}
# 把所有我们所列参数的组合都放在SVC里面进行计算,最后看出哪一组函数的表现度最好
clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)
# 其实建模非常非常简单,主要是数据的预处理麻烦
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)

# 测试集预测看看准确率能到多少
print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))


# 把数据可视化的可以看到,把需要打印的图打印出来
def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
    """Helper function to plot a gallery of portraits"""
    # 在figure上建立一个图当背景
    plt.figure(figsize=(1.8*n_col, 2.4*n_row))
    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
    for i in range(n_row * n_col):
        plt.subplot(n_row, n_col, i+1)
        plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
        plt.title(titles[i], size=12)
        plt.xticks(())
        plt.yticks(())


# 把预测的函数归类标签和实际函数归类标签,比如布什
def title(y_pred, y_test, target_names, i):
    pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
    true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
    return 'predicted: %s\ntrue:  %s'% (pred_name, true_name)
# 把预测出来的人名存起来
prediction_titles = [title(y_pred, y_test, target_names, i)
                     for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

eigenface_titles = ['eigenface %d' %i for i in range(eigenfaces.shape[0])]
# 提取过特征向量之后的脸是什么样子
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()












运行结果:

Total dataset size:
n_samples:1288
n_features:1850
n_classes:7
Extracting the top 150 eigenfaces from 966 faces
done in 0.111s
Projecting the inpyt data on the eigenfaces orthonormal basis
done in 0.014s
****************************************************************************************************
Fitting the classifier to the training set
done in 30.601s
Best estimator found by grid search:
SVC(C=1000.0, cache_size=200, class_weight='balanced', coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.005, kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
Predicting people's names on the test set
done in 0.079s
                   precision    recall  f1-score   support


     Ariel Sharon       0.92      0.60      0.73        20
     Colin Powell       0.81      0.86      0.84        51
  Donald Rumsfeld       0.82      0.72      0.77        25
    George W Bush       0.80      0.97      0.88       141
Gerhard Schroeder       0.95      0.56      0.71        32
      Hugo Chavez       1.00      0.61      0.76        18
       Tony Blair       0.94      0.83      0.88        35


      avg / total       0.85      0.84      0.83       322


[[ 12   4   0   4   0   0   0]
 [  0  44   0   7   0   0   0]
 [  0   3  18   4   0   0   0]
 [  0   2   2 137   0   0   0]
 [  1   1   1  10  18   0   1]
 [  0   0   0   5   1  11   1]
 [  0   0   1   5   0   0  29]]


机器学习中一些基本的算法源码实现及注释详情_第8张图片



你可能感兴趣的:(Python,机器学习算法)