import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
# 线状图 plt.plot
def tes_plot():
x = np.linspace(-np.pi*4, np.pi*4, 100)
y = np.sin(x)
# 设置x轴的刻度
plt.xticks(np.arange(-np.pi*4, np.pi*5, np.pi*2),
[r"$-4π$", r"$-2π$", r"$0$", r"$2π$", r"$4π$"])
# plt.yticks([0.2,0.7,0.9],["不及格 0.2","及格0.7","优秀0.9"])
# 获取边框
ax = plt.gca()
# 设置上右边的边框为不显示
ax.spines['right'].set_color("none")
ax.spines['top'].set_color("none")
# 将x y轴与下 左边框绑定
ax.xaxis.set_ticks_position("bottom")
ax.yaxis.set_ticks_position("left")
# 移动 x y 轴 的位置
ax.spines['bottom'].set_position(('data', 0))
ax.spines['left'].set_position(('data', 0))
# 设置 XY 轴的名称
# plt.xlabel("x轴")
# plt.ylabel("Y轴")
plt.plot(x, y, "r-", label="sinX")
# 以点的形式显示
# plt.scatter(x, y,label="sinX")
# 图例legend label图例的名称
# y2=np.cos(x)
# plt.plot(x, y2,"g-",label="cosX")
# # legend显示图例 legend(handles=,labels=,loc='best')
plt.legend()
# 添加注解 annotate text
x0=np.pi
y0=np.sin(x0)
plt.scatter(x0,y0)
plt.annotate("$(π,0)$",xy=(x0,y0),xycoords="data",xytext=(+5,+5),textcoords="offset points",fontsize=12)
plt.text(3,1,"这是sinX",fontsize=15)
# 对label的样式进行修改 facecolor整体颜色 edgecolor边框颜色 alpha透明度
for label in ax.get_xticklabels()+ax.get_yticklabels():
label.set_fontsize(10)
label.set_bbox(dict(facecolor='black', edgecolor="None", alpha=0.2))
plt.show()
# 散点图 plt.scatter
def test_scatter():
n = 102
x = np.random.rand(n)
y = np.random.rand(n)
cValue = ['r', 'y', 'g']
# cValue=np.random.rand(n)
plt.scatter(x, y, c=cValue, edgecolors="None", s=70, alpha=0.6)
plt.show()
# 柱状图 plt.bar
def test_bar():
n = 10
x = np.arange(1, n+1)
y = np.random.rand(n)
y1 = -y
ax = plt.gca()
# 设置上右边的边框为空
ax.spines['right'].set_color("none")
ax.spines['top'].set_color("none")
# bar 柱状图
plt.bar(x, y, edgecolor="red", alpha=0.6)
plt.bar(x, y1, facecolor='red', alpha=0.6)
plt.xticks(x)
for X, Y in zip(x, y):
plt.text(X, Y+0.02, "%.2f" % (Y), ha="center", va="bottom")
for X, Y in zip(x, y1):
plt.text(X, Y-0.02, "%.2f" % (Y), ha="center", va="top")
plt.show()
# 等高线实例 plt.contour contourf
def test_meshgrid():
def f(x, y):
return (1-x/2+x**5+y**3)*np.exp(-x**2-y**2)
n = 400
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
# 生成网格点
X, Y = np.meshgrid(x, y)
plt.xticks(())
plt.yticks(())
# 填充颜色
plt.contourf(X, Y, f(X, Y), 10, alpha=0.7, cmap=plt.cm.get_cmap("tab10"))
# 线条
C = plt.contour(X, Y, f(X, Y), 10, colors="black", linewidths=0.5)
# 添加标签数字
plt.clabel(C, inline=True, fontsize=10)
plt.show()
# imshow colorbar
def test_img():
i = np.array([0.313660827978, 0.365348418405, 0.423733120134,
0.365348418405, 0.439599930621, 0.525083754405,
0.423733120134, 0.525083754405, 0.651536351379]).reshape(3, 3)
# img操作
plt.imshow(i, interpolation="none", cmap="hot", origin="upper", aspect=1)
# 图例 colorbar
plt.colorbar()
plt.xticks(())
plt.yticks(())
plt.show()
# 3D plot_surface ax = Axes3D(fig)
from mpl_toolkits.mplot3d import Axes3D
def test_3d():
fig = plt.figure()
ax = Axes3D(fig)
# XY轴
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2+Y**2)
# Z轴
Z = np.sin(R)
# 画出3d plot_surface
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap(
"rainbow"), edgecolor="black", linewidths=0.5)
ax.contourf(X, Y, Z, zdir="z", offset=-2, cmap="rainbow")
ax.set_zlim(-2,2)
plt.show()
# 子图 subplot
def test_subplot():
plt.figure()
# 一个figur画四副图
# plt.subplot(2,2,1)
# plt.plot([0,2],[0,2])
# plt.subplot(2,2,2)
# plt.plot([0,2],[0,2])
# plt.subplot(2,2,3)
# plt.plot([0,2],[0,2])
# plt.subplot(2,2,4)
# plt.plot([0,2],[0,2])
# 第一幅占一整行
plt.subplot(2,1,1)
plt.plot([0,2],[0,2])
# 第二行画两幅
plt.subplot(2,2,3)
plt.plot([0,2],[0,2])
plt.subplot(2,2,4)
plt.plot([0,2],[0,2])
plt.show()
def test_subplot2grid():
plt.figure()
# shape figure如何进行分割 loc起始位置 colspan rowspan占多少行列 默认为1
ax1=plt.subplot2grid(shape=(3,3),loc=(0,0),colspan=3,rowspan=1)
ax1.plot([0,2],[0,2])
ax1.set_title("ax01")
ax2=plt.subplot2grid(shape=(3,3),loc=(1,0),colspan=2,rowspan=1)
ax3=plt.subplot2grid(shape=(3,3),loc=(1,2),colspan=1,rowspan=2)
ax4=plt.subplot2grid(shape=(3,3),loc=(2,0))
ax5=plt.subplot2grid(shape=(3,3),loc=(2,1))
plt.show()
import matplotlib.gridspec as gridspec
def test_gridspec():
plt.figure()
gs=gridspec.GridSpec(3,3)
ax1=plt.subplot(gs[0,:])
ax2=plt.subplot(gs[1,:2])
ax3=plt.subplot(gs[1:,2])
ax4=plt.subplot(gs[2,0])
ax5=plt.subplot(gs[2,1])
plt.show()
def test_subplots():
# ax是一个2x2的二维数组
fg,ax=plt.subplots(2,2,sharex=True,sharey=False)
for a in ax:
for a0 in a:
a0.plot([0,1],[0,1])
plt.show()
# 图中图 通过定位来确定图的位置
def test_addaxes():
fig=plt.figure()
x=[1,2,3,4,5]
y=[1,8,5,9,4]
# 确定所画图的位置
left,bottom,width,height=0.1,0.1,0.8,0.8
ax1=fig.add_axes([left,bottom,width,height])
ax1.plot(x,y,'r')
ax1.set_title("indside")
# 方法1
left,bottom,width,height=0.12,0.7,0.15,0.15
ax2=fig.add_axes([left,bottom,width,height])
ax2.plot(x,y,'b')
ax2.set_title("indside01")
# 方法2
left,bottom,width,height=0.7,0.15,0.15,0.15
plt.axes([left,bottom,width,height])
plt.plot(x,y,'y')
plt.title("indside02")
plt.show()
# 双y轴
def test_twins():
x=np.arange(1,10,0.2)
y1=x**2
y2=np.sin(x)
fig,ax1=plt.subplots()
# ax2为ax1的X镜像
ax2=ax1.twinx()
ax1.plot(x,y1,"r-")
ax2.plot(x,y2,"g-")
ax1.set_xlabel("X轴")
ax1.set_ylabel("Y",color="r")
ax2.set_ylabel("Y2",color="g")
plt.show()
# 动画
from matplotlib import animation
def test_animation():
fig,ax=plt.subplots()
x=np.arange(0,np.pi*2,0.2)
line,=ax.plot(x,np.sin(x))
# 图像如何变化的方法 i=[1,frames]
def annimat(i):
line.set_ydata(np.sin(x+i/30))
return line,
# 图像初始的样式
def init():
line.set_ydata(np.sin(x))
return line,
ani=animation.FuncAnimation(fig,func=annimat,frames=200,init_func=init,interval=10)
plt.show()