Spring Cloud限流详解

Spring Cloud限流详解

在高并发的应用中,限流往往是一个绕不开的话题。本文详细探讨在Spring Cloud中如何实现限流。

Zuul 上实现限流是个不错的选择,只需要编写一个过滤器就可以了,关键在于如何实现限流的算法。常见的限流算法有漏桶算法以及令牌桶算法。这个可参考 https://www.cnblogs.com/LBSer/p/4083131.html ,写得通俗易懂,你值得拥有,我就不拽文了。

Google Guava 为我们提供了限流工具类RateLimiter ,于是乎,我们可以撸代码了。

代码示例

 
       
@Component
public class RateLimitZuulFilter extends ZuulFilter {
private final RateLimiter rateLimiter = RateLimiter.create( 1000.0);
@Override
public String filterType() {
return FilterConstants.PRE_TYPE;
}
@Override
public int filterOrder() {
return Ordered.HIGHEST_PRECEDENCE;
}
@Override
public boolean shouldFilter() {
// 这里可以考虑弄个限流开启的开关,开启限流返回true,关闭限流返回false,你懂的。
return true;
}
@Override
public Object run() {
try {
RequestContext currentContext = RequestContext.getCurrentContext();
HttpServletResponse response = currentContext.getResponse();
if (!rateLimiter. tryAcquire()) {
HttpStatus httpStatus = HttpStatus.TOO_MANY_REQUESTS;
response .setContentType( MediaType .TEXT_PLAIN_VALUE);
response .setStatus( httpStatus .value());
response .getWriter() .append( httpStatus .getReasonPhrase());
currentContext.setSendZuulResponse( false);
throw new ZuulException(
httpStatus .getReasonPhrase(),
httpStatus. value(),
httpStatus .getReasonPhrase()
);
}
} catch ( Exception e) {
ReflectionUtils .rethrowRuntimeException(e);
}
return null;
}
}

如上,我们编写了一个pre 类型的过滤器。对Zuul过滤器有疑问的可参考我的博客:

  • Spring Cloud内置的Zuul过滤器详解:http://www.itmuch.com/spring-cloud/zuul/zuul-filter-in-spring-cloud

  • Spring Cloud Zuul过滤器详解:http://www.itmuch.com/spring-cloud/zuul/spring-cloud-zuul-filter

在过滤器中,我们使用Guava RateLimiter 实现限流,如果已经达到最大流量,就抛异常。

分布式场景下的限流

以上单节点Zuul下的限流,但在生产中,我们往往会有多个Zuul实例。对于这种场景如何限流呢?我们可以借助Redis实现限流。

使用redis实现,存储两个key,一个用于计时,一个用于计数。请求每调用一次,计数器增加1,若在计时器时间内计数器未超过阈值,则可以处理任务

 
       
if (!cacheDao.hasKey(TIME_KEY)) {
cacheDao .putToValue( TIME_KEY, 0, 1, TimeUnit .SECONDS);
}
if (cacheDao.hasKey(TIME_KEY) && cacheDao.incrBy(COUNTER_KEY, 1) > 400) {
// 抛个异常什么的
}

实现微服务级别的限流

一些场景下,我们可能还需要实现微服务粒度的限流。此时可以有两种方案:

方式一:在微服务本身实现限流。

和在Zuul上实现限流类似,只需编写一个过滤器或者拦截器即可,比较简单,不作赘述。个人不太喜欢这种方式,因为每个微服务都得编码,感觉成本很高啊。

加班那么多,作为程序猿的我们,应该学会偷懒,这样才可能有时间孝顺父母、抱老婆、逗儿子、遛狗养鸟、聊天打屁、追求人生信仰。好了不扯淡了,看方法二吧。

方法二:在Zuul上实现微服务粒度的限流。

在讲解之前,我们不妨模拟两个路由规则,两种路由规则分别代表Zuul的两种路由方式。

 
       
zuul:
routes:
microservice-provider-user: /user/**
user2:
url: http://localhost:8000/
path: /user2/**

如配置所示,在这里,我们定义了两个路由规则,microservice-provider-user 以及user2 ,其中microservice-provider-user 这个路由规则使用到Ribbon + Hystrix,走的是RibbonRoutingFilter ;而user2 这个路由用不上Ribbon也用不上Hystrix,走的是SipleRoutingFilter 。如果你搞不清楚这点,请参阅我的博客:

  • Spring Cloud内置的Zuul过滤器详解:http://www.itmuch.com/spring-cloud/zuul/zuul-filter-in-spring-cloud
  • Spring Cloud Zuul过滤器详解:http://www.itmuch.com/spring-cloud/zuul/spring-cloud-zuul-filter

搞清楚这点之后,我们就可以撸代码了:

 
       
@Component
public class RateLimitZuulFilter extends ZuulFilter {
private Map< String, RateLimiter> map = Maps.newConcurrentMap();
@Override
public String filterType() {
return FilterConstants.PRE_TYPE;
}
@Override
public int filterOrder() {
// 这边的order一定要大于org.springframework.cloud.netflix.zuul.filters.pre.PreDecorationFilter的order
// 也就是要大于5
// 否则,RequestContext.getCurrentContext()里拿不到serviceId等数据。
return Ordered.LOWEST_PRECEDENCE;
}
@Override
public boolean shouldFilter() {
// 这里可以考虑弄个限流开启的开关,开启限流返回true,关闭限流返回false,你懂的。
return true;
}
@Override
public Object run() {
try {
RequestContext context = RequestContext.getCurrentContext();
HttpServletResponse response = context.getResponse();
String key = null;
// 对于service格式的路由,走RibbonRoutingFilter
String serviceId = ( String) context. get(SERVICE_ID_KEY);
if (serviceId != null) {
key = serviceId;
map .putIfAbsent( serviceId, RateLimiter .create( 1000.0));
}
// 如果压根不走RibbonRoutingFilter,则认为是URL格式的路由
else {
// 对于URL格式的路由,走SimpleHostRoutingFilter
URL routeHost = context.getRouteHost();
if (routeHost != null) {
String url = routeHost.toString();
key = url;
map .putIfAbsent( url, RateLimiter .create( 2000.0));
}
}
RateLimiter rateLimiter = map. get(key);
if (!rateLimiter. tryAcquire()) {
HttpStatus httpStatus = HttpStatus.TOO_MANY_REQUESTS;
response .setContentType( MediaType .TEXT_PLAIN_VALUE);
response .setStatus( httpStatus .value());
response .getWriter() .append( httpStatus .getReasonPhrase());
context.setSendZuulResponse( false);
throw new ZuulException(
httpStatus .getReasonPhrase(),
httpStatus. value(),
httpStatus .getReasonPhrase()
);
}
} catch ( Exception e) {
ReflectionUtils .rethrowRuntimeException(e);
}
return null;
}
}

简单讲解一下这段代码:

对于microservice-provider-user 这个路由,我们可以用context.get(SERVICE_ID_KEY); 获取到serviceId,获取出来就是microservice-provider-user ;

而对于user2 这个路由,我们使用context.get(SERVICE_ID_KEY); 获得是null,但是呢,可以用context.getRouteHost() 获得路由到的地址,获取出来就是http://localhost:8000/ 。接下来的事情,你们懂的。

改进与提升

实际项目中,除以上实现的限流方式,还可能会:

一、在上文的基础上,增加配置项,控制每个路由的限流指标,并实现动态刷新,从而实现更加灵活的管理

二、基于CPU、内存、数据库等压力限流(感谢平安常浩智)提出。

下面,笔者借助Spring Boot Actuator提供的Metrics 能力进行实现基于内存压力的限流——当可用内存低于某个阈值就开启限流,否则不开启限流。

 
       
@Component
public class RateLimitZuulFilter extends ZuulFilter {
@Autowired
private SystemPublicMetrics systemPublicMetrics;
@Override
public boolean shouldFilter() {
// 这里可以考虑弄个限流开启的开关,开启限流返回true,关闭限流返回false,你懂的。
Collection>> metrics = systemPublicMetrics.metrics();
Optional>> freeMemoryMetric = metrics.stream()
.filter( t -> "mem.free" .equals( t .getName()))
.findFirst();
// 如果不存在这个指标,稳妥起见,返回true,开启限流
if (!freeMemoryMetric.isPresent()) {
return true;
}
long freeMemory = freeMemoryMetric. get()
.getValue()
.longValue();
// 如果可用内存小于1000000KB,开启流控
return freeMemory < 1000000L;
}
// 省略其他方法
}

三、实现不同维度的限流,例如:

  • 对请求的目标URL进行限流(例如:某个URL每分钟只允许调用多少次)
  • 对客户端的访问IP进行限流(例如:某个IP每分钟只允许请求多少次)
  • 对某些特定用户或者用户组进行限流(例如:非VIP用户限制每分钟只允许调用100次某个API等)
  • 多维度混合的限流。此时,就需要实现一些限流规则的编排机制。与、或、非等关系。

参考文档

  • 分布式环境下限流方案的实现:http://blog.csdn.net/Justnow_/article/details/53055299

你可能感兴趣的:(java,Spring,Cloud)