Win10系统下一步一步教你实现MASK_RCNN训练自己的数据集(使用labelme制作自己的数据集)及需要注意的大坑

一、Labelme的安装

       参考博客:https://blog.csdn.net/u012746060/article/details/81871733

二、制作自己的数据集

      2.1 首先使用labelme标注如下样式图片(我的图片是jpg格式)

    Win10系统下一步一步教你实现MASK_RCNN训练自己的数据集(使用labelme制作自己的数据集)及需要注意的大坑_第1张图片

      2.2每个文件生成一个对应的.json文件。如下

       Win10系统下一步一步教你实现MASK_RCNN训练自己的数据集(使用labelme制作自己的数据集)及需要注意的大坑_第2张图片

     2.3运行上面参考博客最后给出的脚本程序批量将json文件转化数据集,生成如下格式的文件:

      Win10系统下一步一步教你实现MASK_RCNN训练自己的数据集(使用labelme制作自己的数据集)及需要注意的大坑_第3张图片

      2.4打开每个文件可以看到生成的5个文件,如下:

      Win10系统下一步一步教你实现MASK_RCNN训练自己的数据集(使用labelme制作自己的数据集)及需要注意的大坑_第4张图片

      2.5值得注意的是,打开label.png文件,你会发现是彩色的,而且是有自己标注的形状显示的如下:

      Win10系统下一步一步教你实现MASK_RCNN训练自己的数据集(使用labelme制作自己的数据集)及需要注意的大坑_第5张图片

     打开该label.png文件的详细信息,你会发现图片是8位的,这与很多博客写的不一样(别的博客生成的都是24位的而且看起来全黑的label.png图片,而且给出了matlab或者c++代码才能将24位转化为8位的label.png,过程非常繁琐。为什么出现这种状况呢?查看labelme源码,这是由于labelme版本不同。发现截至到写博客日期最新的版本与他们使用的版本不同)。

    生成的这个8位彩色图片就是最终需要的label.png图片。就是最终,最终,最终label.png图片。重要的话说三遍!!!

三、mask_rcnn程序的训练和预测

       参照博客https://blog.csdn.net/qq_29462849/article/details/81037343修改的程序。

       Win10系统下一步一步教你实现MASK_RCNN训练自己的数据集(使用labelme制作自己的数据集)及需要注意的大坑_第6张图片

      该博客建立了四个文件,为保持统一。我也建立四个相同的文件:pic目录存放原始的图片如步骤2.1。json目录存放labelme标注的json文件如步骤2.2。label_json存放生成的datase如步骤2.3。cv2_mask存放如步骤2.6生成的特定物体对应特定颜色的8位彩色label.png图片。

      训练程序train_model.py:

      

# -*- coding: utf-8 -*-

import os
import sys
import random
import math
import re
import time
import numpy as np
import cv2
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf
from mrcnn.config import Config
#import utils
from mrcnn import model as modellib,utils
from mrcnn import visualize
import yaml
from mrcnn.model import log
from PIL import Image


#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Root directory of the project
ROOT_DIR = os.getcwd()

#ROOT_DIR = os.path.abspath("../")
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")

iter_num=0

# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
    utils.download_trained_weights(COCO_MODEL_PATH)


class ShapesConfig(Config):
    """Configuration for training on the toy shapes dataset.
    Derives from the base Config class and overrides values specific
    to the toy shapes dataset.
    """
    # Give the configuration a recognizable name
    NAME = "shapes"

    # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
    # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

    # Number of classes (including background)
    NUM_CLASSES = 1 + 3  # background + 3 shapes

    # Use small images for faster training. Set the limits of the small side
    # the large side, and that determines the image shape.
    IMAGE_MIN_DIM = 320
    IMAGE_MAX_DIM = 384

    # Use smaller anchors because our image and objects are small
    RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)  # anchor side in pixels

    # Reduce training ROIs per image because the images are small and have
    # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
    TRAIN_ROIS_PER_IMAGE = 100

    # Use a small epoch since the data is simple
    STEPS_PER_EPOCH = 100

    # use small validation steps since the epoch is small
    VALIDATION_STEPS = 50


config = ShapesConfig()
config.display()

class DrugDataset(utils.Dataset):
    # 得到该图中有多少个实例(物体)
    def get_obj_index(self, image):
        n = np.max(image)
        return n

    # 解析labelme中得到的yaml文件,从而得到mask每一层对应的实例标签
    def from_yaml_get_class(self, image_id):
        info = self.image_info[image_id]
        with open(info['yaml_path']) as f:
            temp = yaml.load(f.read())
            labels = temp['label_names']
            del labels[0]
        return labels

    # 重新写draw_mask
    def draw_mask(self, num_obj, mask, image,image_id):
        #print("draw_mask-->",image_id)
        #print("self.image_info",self.image_info)
        info = self.image_info[image_id]
        #print("info-->",info)
        #print("info[width]----->",info['width'],"-info[height]--->",info['height'])
        for index in range(num_obj):
            for i in range(info['width']):
                for j in range(info['height']):
                    #print("image_id-->",image_id,"-i--->",i,"-j--->",j)
                    #print("info[width]----->",info['width'],"-info[height]--->",info['height'])
                    at_pixel = image.getpixel((i, j))
                    if at_pixel == index + 1:
                        mask[j, i, index] = 1
        return mask

    # 重新写load_shapes,里面包含自己的自己的类别
    # 并在self.image_info信息中添加了path、mask_path 、yaml_path
    # yaml_pathdataset_root_path = "/tongue_dateset/"
    # img_floder = dataset_root_path + "rgb"
    # mask_floder = dataset_root_path + "mask"
    # dataset_root_path = "/tongue_dateset/"
    def load_shapes(self, count, img_floder, mask_floder, imglist, dataset_root_path):
        """Generate the requested number of synthetic images.
        count: number of images to generate.
        height, width: the size of the generated images.
        """
        # Add classes
        self.add_class("shapes", 1, "car")
        self.add_class("shapes", 2, "leg")
        self.add_class("shapes", 3, "well")

        for i in range(count):
            # 获取图片宽和高

            filestr = imglist[i].split(".")[0]
            #print(imglist[i],"-->",cv_img.shape[1],"--->",cv_img.shape[0])
            #print("id-->", i, " imglist[", i, "]-->", imglist[i],"filestr-->",filestr)
            # filestr = filestr.split("_")[1]
            mask_path = mask_floder + "/" + filestr + ".png"
            yaml_path = dataset_root_path + "labelme_json/" + filestr + "_json/info.yaml"
            print(dataset_root_path + "labelme_json/" + filestr + "_json/img.png")
            cv_img = cv2.imread(dataset_root_path + "labelme_json/" + filestr + "_json/img.png")

            self.add_image("shapes", image_id=i, path=img_floder + "/" + imglist[i],
                           width=cv_img.shape[1], height=cv_img.shape[0], mask_path=mask_path, yaml_path=yaml_path)

    # 重写load_mask
    def load_mask(self, image_id):
        """Generate instance masks for shapes of the given image ID.
        """
        global iter_num
        print("image_id",image_id)
        info = self.image_info[image_id]
        count = 1  # number of object
        img = Image.open(info['mask_path'])
        num_obj = self.get_obj_index(img)
        mask = np.zeros([info['height'], info['width'], num_obj], dtype=np.uint8)
        mask = self.draw_mask(num_obj, mask, img,image_id)
        occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8)
        for i in range(count - 2, -1, -1):
            mask[:, :, i] = mask[:, :, i] * occlusion

            occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i]))
        labels = []
        labels = self.from_yaml_get_class(image_id)
        labels_form = []
        for i in range(len(labels)):
            if labels[i].find("car") != -1:
                # print "car"
                labels_form.append("car")
            elif labels[i].find("leg") != -1:
                # print "leg"
                labels_form.append("leg")
            elif labels[i].find("well") != -1:
                # print "well"
                labels_form.append("well")
        class_ids = np.array([self.class_names.index(s) for s in labels_form])
        return mask, class_ids.astype(np.int32)

def get_ax(rows=1, cols=1, size=8):
    """Return a Matplotlib Axes array to be used in
    all visualizations in the notebook. Provide a
    central point to control graph sizes.

    Change the default size attribute to control the size
    of rendered images
    """
    _, ax = plt.subplots(rows, cols, figsize=(size * cols, size * rows))
    return ax

#基础设置
dataset_root_path="train_data/"
img_floder = dataset_root_path + "pic"
mask_floder = dataset_root_path + "cv2_mask"
#yaml_floder = dataset_root_path
imglist = os.listdir(img_floder)
count = len(imglist)

#train与val数据集准备
dataset_train = DrugDataset()
dataset_train.load_shapes(count, img_floder, mask_floder, imglist,dataset_root_path)
dataset_train.prepare()

#print("dataset_train-->",dataset_train._image_ids)

dataset_val = DrugDataset()
dataset_val.load_shapes(7, img_floder, mask_floder, imglist,dataset_root_path)
dataset_val.prepare()

#print("dataset_val-->",dataset_val._image_ids)

# Load and display random samples
#image_ids = np.random.choice(dataset_train.image_ids, 4)
#for image_id in image_ids:
#    image = dataset_train.load_image(image_id)
#    mask, class_ids = dataset_train.load_mask(image_id)
#    visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)

# Create model in training mode
model = modellib.MaskRCNN(mode="training", config=config,
                          model_dir=MODEL_DIR)

# Which weights to start with?
init_with = "coco"  # imagenet, coco, or last

if init_with == "imagenet":
    model.load_weights(model.get_imagenet_weights(), by_name=True)
elif init_with == "coco":
    # Load weights trained on MS COCO, but skip layers that
    # are different due to the different number of classes
    # See README for instructions to download the COCO weights
    # print(COCO_MODEL_PATH)
    model.load_weights(COCO_MODEL_PATH, by_name=True,
                       exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",
                                "mrcnn_bbox", "mrcnn_mask"])
elif init_with == "last":
    # Load the last model you trained and continue training
    model.load_weights(model.find_last()[1], by_name=True)

# Train the head branches
# Passing layers="heads" freezes all layers except the head
# layers. You can also pass a regular expression to select
# which layers to train by name pattern.
model.train(dataset_train, dataset_val,
            learning_rate=config.LEARNING_RATE,
            epochs=10,
            layers='heads')



# Fine tune all layers
# Passing layers="all" trains all layers. You can also
# pass a regular expression to select which layers to
# train by name pattern.
model.train(dataset_train, dataset_val,
            learning_rate=config.LEARNING_RATE / 10,
            epochs=30,
            layers="all")

预测程序test_model.py:

    

import os
import sys
import random
import skimage.io
from mrcnn.config import Config
from datetime import datetime 
# Root directory of the project
ROOT_DIR = os.getcwd()

# Import Mask RCNN
sys.path.append(ROOT_DIR)  # To find local version of the library
from mrcnn import utils
import mrcnn.model as modellib
from mrcnn import visualize
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs")

# Local path to trained weights file
COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_shapes_0030.h5")
# Download COCO trained weights from Releases if needed
if not os.path.exists(COCO_MODEL_PATH):
    utils.download_trained_weights(COCO_MODEL_PATH)

# Directory of images to run detection on
IMAGE_DIR = os.path.join(ROOT_DIR, "images")

class ShapesConfig(Config):
    """Configuration for training on the toy shapes dataset.
    Derives from the base Config class and overrides values specific
    to the toy shapes dataset.
    """
    # Give the configuration a recognizable name
    NAME = "shapes"

    # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
    # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

    # Number of classes (including background)
    NUM_CLASSES = 1 + 3  # background + 3 shapes

    # Use small images for faster training. Set the limits of the small side
    # the large side, and that determines the image shape.
    IMAGE_MIN_DIM = 320
    IMAGE_MAX_DIM = 384

    # Use smaller anchors because our image and objects are small
    RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)  # anchor side in pixels

    # Reduce training ROIs per image because the images are small and have
    # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
    TRAIN_ROIS_PER_IMAGE =100

    # Use a small epoch since the data is simple
    STEPS_PER_EPOCH = 100

    # use small validation steps since the epoch is small
    VALIDATION_STEPS = 50

#import train_tongue
#class InferenceConfig(coco.CocoConfig):
class InferenceConfig(ShapesConfig):
    # Set batch size to 1 since we'll be running inference on
    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
    GPU_COUNT = 1
    IMAGES_PER_GPU = 1

config = InferenceConfig()

model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)


# Create model object in inference mode.
model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)

# Load weights trained on MS-COCO
model.load_weights(COCO_MODEL_PATH, by_name=True)

# COCO Class names
# Index of the class in the list is its ID. For example, to get ID of
# the teddy bear class, use: class_names.index('teddy bear')
class_names = ['BG', 'car','leg','well']
# Load a random image from the images folder
file_names = next(os.walk(IMAGE_DIR))[2]
image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))

a=datetime.now() 
# Run detection
results = model.detect([image], verbose=1)
b=datetime.now() 
# Visualize results
print("shijian",(b-a).seconds)
r = results[0]
visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
                            class_names, r['scores'])

运行结果如下:

    Win10系统下一步一步教你实现MASK_RCNN训练自己的数据集(使用labelme制作自己的数据集)及需要注意的大坑_第7张图片

写在最后:本文只是简单的入门。本文誊写最大的动机其实是第二步中的label.png的提到的两个注意的问题,这也是很多人疑惑的地方。至于后面的示例,只是单纯的方便读者入门调通程序。当然读者还需要进一步加入自己的工作。例如优化上面的步骤,计算map,还有在视频检测中使用maskrcnn。由于涉及到项目私密就不给出来,官方给出的很多示例程序:https://github.com/matterport/Mask_RCNN,这方面的博客也有很多,还是需要大家继续努力。

注:在运行test_model时会出现AttributeError: module 'keras.engine.topology' has no attribute'load_weights_from_hdf5_group_by_name.  解决办法使用keras2.0.8版本。1)卸载keras:pip uninstall keras       2)安装2.0.8版本的keras:pip install keras==2.0.8 

你可能感兴趣的:(深度学习)