sudo mv /home/common/下载/hadoop-2.7.2.tar.gz /usr/local sudo tar -xzvf hadoop-2.7.2.tar.gz sudo mv hadoop-2.7.2 hadoop #改个名
在etc/profile文件中添加
export HADOOP_HOME=/usr/local/hadoop export PATH=.:$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
1.修改/usr/local/hadoop/etc/hadoop/hadoop-env.sh文件
export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_121
2.修改/usr/local/hadoop/etc/hadoop/core-site.xml文件
fs.default.name hdfs://master:9000 hadoop.tmp.dir ~/software/apache/hadoop-2.9.1/tmp hadoop.native.lib false
在/etc/hosts中添加自己的外网ip
XXXX master
如果在工程中需要访问HDFS,需要在resources中添加 core-site.xml文件
fs.defaultFS hdfs://master:9000
3.修改/usr/local/hadoop/etc/hadoop/hdfs-site.xml文件
dfs.replication 1 dfs.name.dir file:/home/lintong/software/apache/hadoop-2.9.1/tmp/dfs/name dfs.data.dir file:/home/lintong/software/apache/hadoop-2.9.1/tmp/dfs/data dfs.namenode.checkpoint.dir file:/home/lintong/software/apache/hadoop-2.9.1/tmp/dfs/namenode dfs.permissions false
4./usr/local/hadoop/etc/hadoop/mapred-site.xml(修改mapred-site.xml.template的那个文件)
mapreduce.framework.name yarn
5. /usr/local/hadoop/etc/hadoop/yarn-site.xml
yarn.nodemanager.aux-services mapreduce_shuffle yarn.nodemanager.aux-services.mapreduce.shuffle.class org.apache.hadoop.mapred.ShuffleHandler
6.使得/etc/profile生效
sudo source /etc/profile
/etc/profile文件内容
export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_121 export JRE_HOME=${JAVA_HOME}/jre export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib export PATH=${JAVA_HOME}/bin:$PATH export PATH=/usr/local/texlive/2015/bin/x86_64-linux:$PATH export MANPATH=/usr/local/texlive/2015/texmf-dist/doc/man:$MANPATH export INFOPATH=/usr/local/texlive/2015/texmf-dist/doc/info:$INFOPATH export HADOOP_HOME=/usr/local/hadoop export PATH=.:$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin export M2_HOME=/opt/apache-maven-3.3.9 export M2=$M2_HOME/bin export PATH=$M2:$PATH export GRADLE_HOME=/opt/gradle/gradle-3.4.1 export PATH=$GRADLE_HOME/bin:$PATH
~/.bashrc文件内容
export HADOOP_INSTALL=/usr/local/hadoop export PATH=$PATH:$HADOOP_INSTALL/bin export PATH=$PATH:$HADOOP_INSTALL/sbin export HADOOP_MAPRED_HOME=$HADOOP_INSTALL export HADOOP_COMMON_HOME=$HADOOP_INSTALL export HADOOP_HDFS_HOME=$HADOOP_INSTALL export YARN_HOME=$HADOOP_INSTALL
SSH和Hadoop用户设置可以参考
http://www.cnblogs.com/CheeseZH/p/5051135.html
http://www.powerxing.com/install-hadoop/
免密登录
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys $ ssh localhost
如果遇到dataNode不能启动的问题,参考
http://www.aboutyun.com/thread-12803-1-1.html
去Hadoop/log目录下查看log日志文件,然后在/usr/local/hadoop/tmp/dfs/data/current目录下修改VERSION文件中的内容
修改/etc/hadoop/hadoop-env.sh中设JAVA_HOME为绝对路径
Hadoop目录下的权限
格式化一个新的分布式文件系统
hdfs namenode -format
运行Hadoop
运行Hadoop示例
./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar pi 2 5
输出
Number of Maps = 2 Samples per Map = 5 Wrote input for Map #0 Wrote input for Map #1 Starting Job 17/03/26 11:49:47 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032 17/03/26 11:49:47 INFO input.FileInputFormat: Total input paths to process : 2 17/03/26 11:49:47 INFO mapreduce.JobSubmitter: number of splits:2 17/03/26 11:49:48 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1490497943530_0002 17/03/26 11:49:48 INFO impl.YarnClientImpl: Submitted application application_1490497943530_0002 17/03/26 11:49:48 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1490497943530_0002/ 17/03/26 11:49:48 INFO mapreduce.Job: Running job: job_1490497943530_0002 17/03/26 11:49:55 INFO mapreduce.Job: Job job_1490497943530_0002 running in uber mode : false 17/03/26 11:49:55 INFO mapreduce.Job: map 0% reduce 0% 17/03/26 11:50:02 INFO mapreduce.Job: map 100% reduce 0% 17/03/26 11:50:08 INFO mapreduce.Job: map 100% reduce 100% 17/03/26 11:50:08 INFO mapreduce.Job: Job job_1490497943530_0002 completed successfully 17/03/26 11:50:08 INFO mapreduce.Job: Counters: 49 File System Counters FILE: Number of bytes read=50 FILE: Number of bytes written=353898 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=524 HDFS: Number of bytes written=215 HDFS: Number of read operations=11 HDFS: Number of large read operations=0 HDFS: Number of write operations=3 Job Counters Launched map tasks=2 Launched reduce tasks=1 Data-local map tasks=2 Total time spent by all maps in occupied slots (ms)=9536 Total time spent by all reduces in occupied slots (ms)=3259 Total time spent by all map tasks (ms)=9536 Total time spent by all reduce tasks (ms)=3259 Total vcore-milliseconds taken by all map tasks=9536 Total vcore-milliseconds taken by all reduce tasks=3259 Total megabyte-milliseconds taken by all map tasks=9764864 Total megabyte-milliseconds taken by all reduce tasks=3337216 Map-Reduce Framework Map input records=2 Map output records=4 Map output bytes=36 Map output materialized bytes=56 Input split bytes=288 Combine input records=0 Combine output records=0 Reduce input groups=2 Reduce shuffle bytes=56 Reduce input records=4 Reduce output records=0 Spilled Records=8 Shuffled Maps =2 Failed Shuffles=0 Merged Map outputs=2 GC time elapsed (ms)=319 CPU time spent (ms)=2570 Physical memory (bytes) snapshot=719585280 Virtual memory (bytes) snapshot=5746872320 Total committed heap usage (bytes)=513802240 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=236 File Output Format Counters Bytes Written=97 Job Finished in 21.472 seconds Estimated value of Pi is 3.60000000000000000000
可以访问 Web 界面 http://localhost:50070 查看 NameNode 和 Datanode 信息,还可以在线查看 HDFS 中的文件
启动 YARN 之后,运行实例的方法还是一样的,仅仅是资源管理方式、任务调度不同。观察日志信息可以发现,不启用 YARN 时,是 “mapred.LocalJobRunner” 在跑任务,启用 YARN 之后,是 “mapred.YARNRunner” 在跑任务。启动 YARN 有个好处是可以通过 Web 界面查看任务的运行情况:http://localhost:8088/cluster
点击history,查看每一个任务,如果遇到master:19888不能访问的情况,在目录下执行
mr-jobhistory-daemon.sh start historyserver
关于Hadoop的架构请关注下面这篇博文的内容
Hadoop HDFS概念学习系列之初步掌握HDFS的架构及原理1(一)
关于Hadoop中HDFS的读取过程请关注下面这篇博文的内容
Hadoop HDFS概念学习系列之初步掌握HDFS的架构及原理2(二)
关于Hadoop中HDFS的写入过程请关注下面这篇博文的内容
Hadoop HDFS概念学习系列之初步掌握HDFS的架构及原理3(三)
关于Hadoop中SNN的作用请关注下面这篇博文的内容
http://blog.csdn.net/xh16319/article/details/31375197