损失函数(loss function)

      通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成。发现一份不错的介绍资料:

http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf (题名“Loss functions; a unifying view”)。
 
一、损失项
  • 对回归问题,常用的有:平方损失(for linear regression),绝对值损失;
  • 对分类问题,常用的有:hinge loss(for soft margin SVM),log loss(for logistic regression)。
 
说明:
  • 对hinge loss,又可以细分出hinge loss(或简称L1 loss)和squared hinge loss(或简称L2 loss)。国立台湾大学的Chih-Jen Lin老师发布的Liblinear就实现了这2种hinge loss。L1 loss和L2 loss与下面的regularization是不同的,注意区分开。
二、正则项
  • 常用的有L1-regularization和L2-regularization。上面列的那个资料对此还有详细的总结。

 

补充
    • Liblinear地址:http://www.csie.ntu.edu.tw/~cjlin/liblinear/

 

## 机器学习中常见的损失函数  

  一般来说,我们在进行机器学习任务时,使用的每一个算法都有一个目标函数,算法便是对这个目标函数进行优化,特别是在分类或者回归任务中,便是使用损失函数(Loss Function)作为其目标函数,又称为代价函数(Cost Function)。   

损失函数是用来评价模型的预测值Y^=f(X)与真实值Y的不一致程度,它是一个非负实值函数。通常使用L(Y,f(x))来表示,损失函数越小,模型的性能就越好。   

设总有N个样本的样本集为(X,Y)=(xi,yi)yi,i[1,N]为样本i的真实值,yi^=f(xi),i[1,N]为样本i的预测值,f为分类或者回归函数。 那么总的损失函数为:

       L=i=1N(yi,yi^)

   常见的损失函数(yi,yi^)有以下几种: ### Zero-one Loss Zero-one Loss即0-1损失,它是一种较为简单的损失函数,如果预测值与目标值不相等,那么为1,否则为0,即:

       ℓ(yi,yi^)={1,0,yiyi^yi=yi^

可以看出上述的定义太过严格,如果真实值为1,预测值为0.999,那么预测应该正确,但是上述定义显然是判定为预测错误,那么可以进行改进为Perceptron Loss。

### Perceptron Loss Perceptron Loss即为感知损失。即:

       ℓ(yi,yi^)={1,0,|yiyi^|>t|yiyi^|t

其中t是一个超参数阈值,如在PLA([Perceptron Learning Algorithm,感知机算法](http://kubicode.me/2015/08/06/Machine%20Learning/Perceptron-Learning-Algorithm/))中取t=0.5

### Hinge Loss Hinge损失可以用来解决间隔最大化问题,如在SVM中解决几何间隔最大化问题,其定义如下:

       ℓ(yi,yi^)=max{0,1yiyi^}
       yi{1,+1}

更多请参见:[Hinge-loss](https://en.wikipedia.org/wiki/Hinge_loss)。

### Log Loss 在使用似然函数最大化时,其形式是进行连乘,但是为了便于处理,一般会套上log,这样便可以将连乘转化为求和,由于log函数是单调递增函数,因此不会改变优化结果。因此log类型的损失函数也是一种常见的损失函数,如在LR([Logistic Regression, 逻辑回归](chrome-extension://ikhdkkncnoglghljlkmcimlnlhkeamad/pdf-viewer/web/viewer.html?file=https%3A%2F%2Fpeople.eecs.berkeley.edu%2F~russell%2Fclasses%2Fcs194%2Ff11%2Flectures%2FCS194%2520Fall%25202011%2520Lecture%252006.pdf))中使用交叉熵(Cross Entropy)作为其损失函数。即:

        ℓ(yi,yi^)=yilogyi^+(1yi)log(1yi^)
       yi{0,1}

规定

       0log=0

### Square Loss Square Loss即平方误差,常用于回归中。即:

      ℓ(yi,yi^)=(yiyi^)2
      yi,yi^R

### Absolute Loss Absolute Loss即绝对值误差,常用于回归中。即:

      ℓ(yi,yi^)=|yiyi^|
      yi,yi^R

### Exponential Loss Exponential Loss为指数误差,常用于boosting算法中,如[AdaBoost](https://en.wikipedia.org/wiki/AdaBoost)。即:

      ℓ(yi,yi^)=exp(yiyi^)
      yi{1,1}

正则

一般来说,对分类或者回归模型进行评估时,需要使得模型在训练数据上使得损失函数值最小,即使得经验风险函数最小化,但是如果只考虑经验风险(Empirical risk),容易过拟合(详细参见防止过拟合的一些方法),因此还需要考虑模型的泛化能力,一般常用的方法便是在目标函数中加上正则项,由损失项(Loss term)加上正则项(Regularization term)构成结构风险(Structural risk),那么损失函数变为: 

L=i=1N(yi,yi^)+λR(ω)


其中λ是正则项超参数,常用的正则方法包括:L1正则与L2正则,详细介绍参见:防止过拟合的一些方法。

 

各损失函数图形如下:

loss_function

你可能感兴趣的:(损失函数(loss function))