ShardingSphere 数据分片

前言

其实很多人对分库分表多少都有点恐惧,其实我也是,总觉得这玩意是运维干的、数据量上来了或者sql过于复杂、一些数据分片的中间件支持的也不是很友好、配置繁琐等多种问题。

我们今天用ShardingSphere 给大家演示数据分片,包括分库分表、只分表不分库进行说明。

下一节有时间的话在讲讲读写分离吧。

github地址:https://github.com/362460453/boot-sharding-JDBC

正文

 

目录

前言

正文

ShardingSphere介绍

为什么不用mycat

实践前的准备工作

代码案例

 总结


 

ShardingSphere介绍

 

ShardingSphere是一套开源的分布式数据库中间件解决方案组成的生态圈,它由Sharding-JDBC、Sharding-Proxy和Sharding-Sidecar(计划中)这3款相互独立的产品组成。 他们均提供标准化的数据分片、分布式事务和数据库治理功能,可适用于如Java同构、异构语言、容器、云原生等各种多样化的应用场景。

ShardingSphere的功能能帮助我们做什么

  • 数据分片
  • 读写分离
  • 编排治理
  • 分布式事务

2016年初Sharding-JDBC被开源,这个产品是当当的,加入了Apache 后改名为 ShardingSphere 。他是我们应用和数据库之间的中间层,虽代码入侵性很强,但不会对现有业务逻辑进行改变。

更多文档请点击官网:https://shardingsphere.apache.org/document/current/en/overview/

为什么不用mycat

 

大家如果去查相关资料会知道,mycat和ShardingSphere是同类型的中间件,主要的功能,数据分片和读写分离两个都能去做,但是姿势却有很大的差别, 从字面意义上看Sharding 含义是分片、碎片的意思,所以不难理解ShardingSphere 对数据分片有很强对能力,对于99%对sql都是支持的,官网也有sql支持的相关内容,大家详细阅读,只有 类似sum 这种函数不支持,而且对 ORM框架和常用数据库基本都兼容,所以个人建议如果你们做数据分片,也就是是分库分表对话,强烈建议选择ShardingSphere,因为我私下也和一些朋友交流过,mycat 的数据分片对多表查询不是很友好,而且用 mycat 要有很强的运维来做,还有一点就是mycat 都是靠xml配置的,没有代码入侵,所以这也算是他的优点吧。如果你们只做读写分离对话,那么我建议用mycat,是没问题的。

 

实践前的准备工作

  1. 启动你的mysql,创建两个数据库,分别叫 sharding_master 和 sharding_salve
  2. 分别在这两个数据库执行如下sql
CREATE TABLE IF NOT EXISTS `t_order_0` (
  `order_id` INT NOT NULL,
  `user_id`  INT NOT NULL,
  PRIMARY KEY (`order_id`)
);
CREATE TABLE IF NOT EXISTS `t_order_1` (
  `order_id` INT NOT NULL,
  `user_id`  INT NOT NULL,
  PRIMARY KEY (`order_id`)
);

做完以上两步结果如下

ShardingSphere 数据分片_第1张图片

 

 

代码案例

 

环境
工具 版本
jdk

1.8.0_144

springboot 2.0.4.RELEASE
sharding 1.3.1
mysql 5.7

 

创建一个springboot工程,我们使用 JdbcTemplate 框架,如果用mybatis也是无影响的。

pom引用依赖如下


        org.springframework.boot
        spring-boot-starter-parent
        2.0.4.RELEASE
    

    
        1.8
        1.0.26
        1.3.3
    

    
        
            org.springframework.boot
            spring-boot-starter-web
        
        
            org.springframework.boot
            spring-boot-starter-jdbc
        
        
            mysql
            mysql-connector-java
        
        
            com.dangdang
            sharding-jdbc-core
            ${sharding.jdbc.core.version}
        
        
            com.alibaba
            druid
            ${druid.version}
        
    

 

application.yml 配置如下

 

server:
  port: 8050
sharding:
  jdbc: 
    driverClassName: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/sharding_master?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&failOverReadOnly=false
    username: root
    password: 123456
    filters: stat
    maxActive: 100
    initialSize: 1
    maxWait: 15000
    minIdle: 1
    timeBetweenEvictionRunsMillis: 30000
    minEvictableIdleTimeMillis: 180000
    validationQuery: SELECT 'x'
    testWhileIdle: true
    testOnBorrow: false
    testOnReturn: false
    poolPreparedStatements: false
    maxPoolPreparedStatementPerConnectionSize: 20
    removeAbandoned: true
    removeAbandonedTimeout: 600
    logAbandoned: false
    connectionInitSqls: 
    
    url0: jdbc:mysql://localhost:3306/sharding_master?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&failOverReadOnly=false
    username0: root
    password0: 123456
    
    url1: jdbc:mysql://localhost:3306/sharding_salve?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&failOverReadOnly=false
    username1: root
    password1: 123456

 

yml映射成Bean

@Data
@ConfigurationProperties(prefix="sharding.jdbc")
public class ShardDataSourceProperties {
	
	private String driverClassName;
	
	private String url;
	
	private String username;
	
	private String password;
	
	private String url0;
	
	private String username0;
	
	private String password0;
	
	private String url1;
	
	private String username1;
	
	private String password1;
	
	private String filters;
	
	private int maxActive;
	
	private int initialSize;
	
	private int maxWait;
	
	private int minIdle;
	
	private int timeBetweenEvictionRunsMillis;
	
	private int minEvictableIdleTimeMillis;
	
	private String validationQuery;
	
	private boolean testWhileIdle;
	
	private boolean testOnBorrow;
	
	private boolean testOnReturn;
	
	private boolean poolPreparedStatements;
	
	private int maxPoolPreparedStatementPerConnectionSize;
	
	private boolean removeAbandoned;

	private int removeAbandonedTimeout;
	
	private boolean logAbandoned;
	
	private List connectionInitSqls;
//省略geter setter

 

分库策略

//通过实现SingleKeyDatabaseShardingAlgorithm接口实现分库
public class ModuloDatabaseShardingAlgorithm implements SingleKeyDatabaseShardingAlgorithm {

	@Override
	public String doEqualSharding(Collection availableTargetNames, ShardingValue shardingValue) {
		for (String each : availableTargetNames) {
            if (each.endsWith(shardingValue.getValue() % 2 + "")) {
                return each;
            }
        }
        throw new IllegalArgumentException();
	}

	@Override
	public Collection doInSharding(Collection availableTargetNames,
			ShardingValue shardingValue) {
		Collection result = new LinkedHashSet<>(availableTargetNames.size());
        for (Integer value : shardingValue.getValues()) {
            for (String targetName : availableTargetNames) {
                if (targetName.endsWith(value % 2 + "")) {
                    result.add(targetName);
                }
            }
        }
        return result;
	}

	@Override
	public Collection doBetweenSharding(Collection availableTargetNames,
			ShardingValue shardingValue) {
		Collection result = new LinkedHashSet<>(availableTargetNames.size());
        Range range = (Range) shardingValue.getValueRange();
        for (Integer i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
            for (String each : availableTargetNames) {
                if (each.endsWith(i % 2 + "")) {
                    result.add(each);
                }
            }
        }
        return result;
	}


}

 

分表策略

public class ModuloTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm {

    /**
     * 对于分片字段的等值操作 都走这个方法。(包括 插入 更新)
     * 如:
     * 

* select * from t_order from t_order where order_id = 11 * └── SELECT * FROM t_order_1 WHERE order_id = 11 * select * from t_order from t_order where order_id = 44 * └── SELECT * FROM t_order_0 WHERE order_id = 44 *

*/ @Override public String doEqualSharding(final Collection tableNames, final ShardingValue shardingValue) { for (String each : tableNames) { if (each.endsWith(shardingValue.getValue() % 2 + "")) { return each; } } throw new IllegalArgumentException(); } /** * 对于分片字段的in操作,都走这个方法。 * select * from t_order from t_order where order_id in (11,44) * ├── SELECT * FROM t_order_0 WHERE order_id IN (11,44) * └── SELECT * FROM t_order_1 WHERE order_id IN (11,44) * select * from t_order from t_order where order_id in (11,13,15) * └── SELECT * FROM t_order_1 WHERE order_id IN (11,13,15) * select * from t_order from t_order where order_id in (22,24,26) * └──SELECT * FROM t_order_0 WHERE order_id IN (22,24,26) */ @Override public Collection doInSharding(final Collection tableNames, final ShardingValue shardingValue) { Collection result = new LinkedHashSet<>(tableNames.size()); for (Integer value : shardingValue.getValues()) { for (String tableName : tableNames) { if (tableName.endsWith(value % 2 + "")) { result.add(tableName); } } } return result; } /** * 对于分片字段的between操作都走这个方法。 * select * from t_order from t_order where order_id between 10 and 20 * ├── SELECT * FROM t_order_0 WHERE order_id BETWEEN 10 AND 20 * └── SELECT * FROM t_order_1 WHERE order_id BETWEEN 10 AND 20 */ @Override public Collection doBetweenSharding(final Collection tableNames, final ShardingValue shardingValue) { Collection result = new LinkedHashSet<>(tableNames.size()); Range range = (Range) shardingValue.getValueRange(); for (Integer i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) { for (String each : tableNames) { if (each.endsWith(i % 2 + "")) { result.add(each); } } } return result; } }

 

 

对特定表和库,进行特定的分库分表规则

简单说,就是分库按照了user_id的奇偶区分,分表按照order_id 的奇偶区分,

如果你有多个表进行分片,就写多个TableRule,

配置两个数据源,分别是我在yml里的配置,根据你的需求个性化配置就可以。

@Configuration
@EnableConfigurationProperties(ShardDataSourceProperties.class)
public class ShardDataSourceConfig {

	@Autowired
	private ShardDataSourceProperties shardDataSourceProperties;

	private DruidDataSource parentDs() throws SQLException {
		DruidDataSource ds = new DruidDataSource();
		ds.setDriverClassName(shardDataSourceProperties.getDriverClassName());
		ds.setUsername(shardDataSourceProperties.getUsername());
		ds.setUrl(shardDataSourceProperties.getUrl());
		ds.setPassword(shardDataSourceProperties.getPassword());
		ds.setFilters(shardDataSourceProperties.getFilters());
		ds.setMaxActive(shardDataSourceProperties.getMaxActive());
		ds.setInitialSize(shardDataSourceProperties.getInitialSize());
		ds.setMaxWait(shardDataSourceProperties.getMaxWait());
		ds.setMinIdle(shardDataSourceProperties.getMinIdle());
		ds.setTimeBetweenEvictionRunsMillis(shardDataSourceProperties.getTimeBetweenEvictionRunsMillis());
		ds.setMinEvictableIdleTimeMillis(shardDataSourceProperties.getMinEvictableIdleTimeMillis());
		ds.setValidationQuery(shardDataSourceProperties.getValidationQuery());
		ds.setTestWhileIdle(shardDataSourceProperties.isTestWhileIdle());
		ds.setTestOnBorrow(shardDataSourceProperties.isTestOnBorrow());
		ds.setTestOnReturn(shardDataSourceProperties.isTestOnReturn());
		ds.setPoolPreparedStatements(shardDataSourceProperties.isPoolPreparedStatements());
		ds.setMaxPoolPreparedStatementPerConnectionSize(
				shardDataSourceProperties.getMaxPoolPreparedStatementPerConnectionSize());
		ds.setRemoveAbandoned(shardDataSourceProperties.isRemoveAbandoned());
		ds.setRemoveAbandonedTimeout(shardDataSourceProperties.getRemoveAbandonedTimeout());
		ds.setLogAbandoned(shardDataSourceProperties.isLogAbandoned());
		ds.setConnectionInitSqls(shardDataSourceProperties.getConnectionInitSqls());
		return ds;
	}

	private DataSource ds0() throws SQLException {
		DruidDataSource ds = parentDs();
		ds.setUsername(shardDataSourceProperties.getUsername0());
		ds.setUrl(shardDataSourceProperties.getUrl0());
		ds.setPassword(shardDataSourceProperties.getPassword0());
		return ds;
	}

	private DataSource ds1() throws SQLException {
		DruidDataSource ds = parentDs();
		ds.setUsername(shardDataSourceProperties.getUsername1());
		ds.setUrl(shardDataSourceProperties.getUrl1());
		ds.setPassword(shardDataSourceProperties.getPassword1());
		return ds;
	}

	private DataSourceRule dataSourceRule() throws SQLException {
		Map dataSourceMap = new HashMap<>(2);
		dataSourceMap.put("ds_0", ds0());
		dataSourceMap.put("ds_1", ds1());
		DataSourceRule dataSourceRule = new DataSourceRule(dataSourceMap);
		return dataSourceRule;
	}
//对order对策略
	private TableRule orderTableRule() throws SQLException {
		TableRule orderTableRule = TableRule.builder("t_order").actualTables(Arrays.asList("t_order_0", "t_order_1"))
				.dataSourceRule(dataSourceRule()).build();
		return orderTableRule;
	}

//分库分表策略
	private ShardingRule shardingRule() throws SQLException {
		ShardingRule shardingRule = ShardingRule.builder().dataSourceRule(dataSourceRule())
				.tableRules(Arrays.asList(orderTableRule(), orderItemTableRule()))
				.databaseShardingStrategy(
						new DatabaseShardingStrategy("user_id", new ModuloDatabaseShardingAlgorithm()))
				.tableShardingStrategy(new TableShardingStrategy("order_id", new ModuloTableShardingAlgorithm()))
				.build();
		return shardingRule;
	}

	@Bean
	public DataSource dataSource() throws SQLException {
		return ShardingDataSourceFactory.createDataSource(shardingRule());
	}


    @Bean
    public PlatformTransactionManager transactionManager() throws SQLException {
        return new DataSourceTransactionManager(dataSource());
    }
}

 

我们需要从controller调用接口进行对数据的增加和查询

下面所有的类都是用来模拟请求进行测试

@RestController
@RequestMapping("/order")
public class OrderController {
    @Autowired
    private OrderDao orderDao;

    @RequestMapping(path = "/createOrder/{userId}/{orderId}", method = {RequestMethod.GET})
    public String createOrder(@PathVariable("userId") Integer userId, @PathVariable("orderId") Integer orderId) {
        Order order = new Order();
        order.setOrderId(orderId);
        order.setUserId(userId);
        orderDao.createOrder(order);
        return "success";
    }

    @RequestMapping(path = "/{userId}", method = {RequestMethod.GET})
    public List getOrderListByUserId(@PathVariable("userId") Integer userId) {
        return orderDao.getOrderListByUserId(userId);
    }
}


---------------------------------------------------
public interface OrderDao {
    List getOrderListByUserId(Integer userId);

    void createOrder(Order order);
}
---------------------------------------------------
@Service
public class OrderDaoImpl implements OrderDao {
    @Autowired
    JdbcTemplate jdbcTemplate;


    @Override
    public List getOrderListByUserId(Integer userId) {

        StringBuilder sqlBuilder = new StringBuilder();
        sqlBuilder
                .append("select order_id, user_id from t_order where user_id=? ");
        return jdbcTemplate.query(sqlBuilder.toString(), new Object[]{userId},
                new int[]{Types.INTEGER}, new BeanPropertyRowMapper(
                        Order.class));
    }

    @Override
    public void createOrder(Order order) {
        StringBuffer sb = new StringBuffer();
        sb.append("insert into t_order(user_id, order_id)");
        sb.append("values(");
        sb.append(order.getUserId()).append(",");
        sb.append(order.getOrderId());
        sb.append(")");
        jdbcTemplate.update(sb.toString());

    }
}

---------------------------------------------------
public class Order implements Serializable {

	private int userId;

	private int orderId;

---------------------------------------------------
@SpringBootApplication
public class Application {
	
	public static void main(String[] args) {
        SpringApplication.run(Application.class, args);
    }

}

测试

启动项目,访问:http://localhost:8050/order/createOrder/1/1 

更换参数多次访问,可以插入多条记录,观察你的数据库入库情况,已经按照我们制定的分库分表策略进行划分了。

需要注意的是

shareding是不支持jdbctemplate的批量修改操作的。

表名前不要加上库名,原生的情况加库名,不加库名其实是一样的,但使用shareding的表就会报错。

 

如果想进行只分表不分库的话

  • 注释掉 ModuloDatabaseShardingAlgorithm 类
  • 还有ShardDataSourceConfig.shardingRule() 中的分库策略那行代码
  • 还有相关数据源配置改成 1 个

 

ShardingSphere读写分离等我下次有时间在看看,我也需要研究一下。

ShardingSphere 数据分片_第2张图片

 

 

 

你可能感兴趣的:(mysql)