ubuntu16.04安装caffe2有四种方式,在这里我选择的使用源码安装
1:首先安装依赖环境
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
cmake \
git \
libgoogle-glog-dev \
libgtest-dev \
libiomp-dev \ l
ibleveldb-dev \
liblmdb-dev \
libopencv-dev \
libopenmpi-dev \
libsnappy-dev \
libprotobuf-dev \
openmpi-bin \
openmpi-doc \
protobuf-compiler \
python-dev \
python-pip
pip install --user \ future \ numpy \ protobuf
2:安装libgflags-dev(至于Ubuntu14.04对应的是libgflags2)
sudo apt-get install -y --no-install-recommends libgflags-dev
3:安装NVIDIA驱动
rboot
4:安装cuda
sudo apt-get update && sudo apt-get install wget -y --no-install-recommends
wget"http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_8.0.61-1_amd64.deb"
sudo dpkg -i cuda-repo-ubuntu1404_8.0.61-1_amd64.deb
sudo apt-get update sudo apt-get install cuda
5:安装cudnn
注:官方文档默认安装的是5.1版本,后续会报错要求升级,此处我安装的是7版本
首先去官网下载安装包(https://developer.nvidia.com/rdp/cudnn-download)
sudo dpkg -i libcudnn7_7.0.3.11-1+cuda9.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.0.3.11-1+cuda9.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.0.3.11-1+cuda9.0_amd64.deb
然后验证安装是否成功
$cp -r /usr/src/cudnn_samples_v7/ $HOME
$ cd $HOME/cudnn_samples_v7/mnistCUDNN
$make clean && make
Text passed!
6:安装caffe2
# Clone Caffe2's source code from our Github repository
git clone --recursive https://github.com/pytorch/pytorch.git && cd pytorch
git submodule update --init
# Create a directory to put Caffe2's build files in
mkdir build && cd build
# Configure Caffe2's build
# This looks for packages on your machine and figures out which functionality
# to include in the Caffe2 installation. The output of this command is very
# useful in debugging.
cmake ..
# Compile, link, and install Caffe2
sudo make install
rboot(不重启的话检验时将会失败)
检验:
cd ~ && python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"
python caffe2/python/operator_test/activation_ops_test.py