1508. Range Sum of Sorted Subarray Sums

Given the array nums consisting of n positive integers. You computed the sum of all non-empty continous subarrays from the array and then sort them in non-decreasing order, creating a new array of n * (n + 1) / 2 numbers.

Return the sum of the numbers from index left to index right (indexed from 1), inclusive, in the new array. Since the answer can be a huge number return it modulo 10^9 + 7.

 

Example 1:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 5
Output: 13 
Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13. 

Example 2:

Input: nums = [1,2,3,4], n = 4, left = 3, right = 4
Output: 6
Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.

Example 3:

Input: nums = [1,2,3,4], n = 4, left = 1, right = 10
Output: 50

 

Constraints:

  • 1 <= nums.length <= 10^3
  • nums.length == n
  • 1 <= nums[i] <= 100
  • 1 <= left <= right <= n * (n + 1) / 2
class Solution {
    public int rangeSum(int[] nums, int n, int left, int right) {
        List list = new ArrayList();
        list.add(0);
        for(int i = 0; i < n; i++){
            int cur = nums[i];
            for(int j = i+1; j < n; j++){
                list.add(cur);
                cur += nums[j];
            }
            list.add(cur);
        }
        Collections.sort(list);
        //return list.size();
        int sum = 0;
        for(int i = left; i <= right; i++){
            sum += list.get(i);
            sum %= 1000000007;
        }
        return sum;
    }
}

注意是continuous array

你可能感兴趣的:(1508. Range Sum of Sorted Subarray Sums)