计算机中二进制数据的编码方式,整理了两篇他人的博客

二进制的三种编码:原码,反码,补码

以前不是很理解,最近有时间进行了补充学习,通过两篇渐进关系的文章让我清晰了很多:

第一篇:

一. 机器数和真值

在学习原码, 反码和补码之前, 需要先了解机器数和真值的概念.

1、机器数

一个数在计算机中的二进制表示形式,  叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。

那么,这里的 00000011 和 10000011 就是机器数。

2、真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

 

二. 原码, 反码, 补码的基础概念和计算方法.

在探求为何机器要使用补码之前, 让我们先了解原码, 反码和补码的概念.对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.

1. 原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1] = 0000 0001

[-1] = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111]

[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

2. 反码

反码的表示方法是:

正数的反码是其本身

负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.

[+1] = [00000001] = [00000001]

[-1] = [10000001] = [11111110]

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.

3. 补码

补码的表示方法是:

正数的补码就是其本身

负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001] = [00000001] = [00000001]

[-1] = [10000001] = [11111110] = [11111111]

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

 

三. 为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先"死记硬背"上面的原码, 反码和补码的表示方式以及计算方法.

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001] = [00000001] = [00000001]

所以不需要过多解释. 但是对于负数:

[-1] = [10000001] = [11111110] = [11111111]

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001] + [10000001] = [10000010] = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码:

计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001] + [1000 0001]= [0000 0001] + [1111 1110] = [1111 1111] = [1000 0000] = -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]和[1000 0000]两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1) = [0000 0001] + [1000 0001] = [0000 0001] + [1111 1111] = [0000 0000]=[0000 0000]

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001] + [1111 1111] = [1111 1111] + [1000 0001] = [1000 0000]

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000] 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000], 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.

 

四 原码, 反码, 补码 再深入

计算机巧妙地把符号位参与运算, 并且将减法变成了加法, 背后蕴含了怎样的数学原理呢?

将钟表想象成是一个1位的12进制数. 如果当前时间是6点, 我希望将时间设置成4点, 需要怎么做呢?我们可以:

1. 往回拨2个小时: 6 - 2 = 4

2. 往前拨10个小时: (6 + 10) mod 12 = 4

3. 往前拨10+12=22个小时: (6+22) mod 12 =4

2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12后的余数是4.

所以钟表往回拨(减法)的结果可以用往前拨(加法)替代!

现在的焦点就落在了如何用一个正数, 来替代一个负数. 上面的例子我们能感觉出来一些端倪, 发现一些规律. 但是数学是严谨的. 不能靠感觉.

首先介绍一个数学中相关的概念: 同余

 

同余的概念

两个整数a,b,若它们除以整数m所得的余数相等,则称a,b对于模m同余

记作 a ≡ b (mod m)

读作 a 与 b 关于模 m 同余。

举例说明:

4 mod 12 = 4

16 mod 12 = 4

28 mod 12 = 4

所以4, 16, 28关于模 12 同余.

 

负数取模

正数进行mod运算是很简单的. 但是负数呢?

下面是关于mod运算的数学定义:

clip_image001

上面是截图, "取下界"符号找不到如何输入(word中粘贴过来后乱码). 下面是使用"L"和"J"替换上图的"取下界"符号:

x mod y = x - y L x / y J

上面公式的意思是:

x mod y等于 x 减去 y 乘上 x与y的商的下界.

以 -3 mod 2 举例:

-3 mod 2

= -3 - 2xL -3/2 J

= -3 - 2xL-1.5J

= -3 - 2x(-2)

= -3 + 4 = 1

所以:

(-2) mod 12 = 12-2=10

(-4) mod 12 = 12-4 = 8

(-5) mod 12 = 12 - 5 = 7

 

开始证明

再回到时钟的问题上:

回拨2小时 = 前拨10小时

回拨4小时 = 前拨8小时

回拨5小时= 前拨7小时

注意, 这里发现的规律!

结合上面学到的同余的概念.实际上:

(-2) mod 12 = 10

10 mod 12 = 10

-2与10是同余的.

(-4) mod 12 = 8

8 mod 12 = 8

-4与8是同余的.

距离成功越来越近了. 要实现用正数替代负数, 只需要运用同余数的两个定理:

反身性:

a ≡ a (mod m)

这个定理是很显而易见的.

线性运算定理:

如果a ≡ b (mod m),c ≡ d (mod m) 那么:

(1)a ± c ≡ b ± d (mod m)

(2)a * c ≡ b * d (mod m)

如果想看这个定理的证明, 请看:http://baike.baidu.com/view/79282.htm

所以:

7 ≡ 7 (mod 12)

(-2) ≡ 10 (mod 12)

7 -2 ≡ 7 + 10 (mod 12)

现在我们为一个负数, 找到了它的正数同余数. 但是并不是7-2 = 7+10, 而是 7 -2 ≡ 7 + 10 (mod 12) , 即计算结果的余数相等.

接下来回到二进制的问题上, 看一下: 2-1=1的问题.

2-1=2+(-1) = [0000 0010] + [1000 0001]= [0000 0010] + [1111 1110]

先到这一步, -1的反码表示是1111 1110. 如果这里将[1111 1110]认为是原码, 则[1111 1110]原 = -126, 这里将符号位除去, 即认为是126.

发现有如下规律:

(-1) mod 127 = 126

126 mod 127 = 126

即:

(-1) ≡ 126 (mod 127)

2-1 ≡ 2+126 (mod 127)

2-1 与 2+126的余数结果是相同的! 而这个余数, 正式我们的期望的计算结果: 2-1=1

所以说一个数的反码, 实际上是这个数对于一个膜的同余数. 而这个膜并不是我们的二进制, 而是所能表示的最大值! 这就和钟表一样, 转了一圈后总能找到在可表示范围内的一个正确的数值!

而2+126很显然相当于钟表转过了一轮, 而因为符号位是参与计算的, 正好和溢出的最高位形成正确的运算结果.

既然反码可以将减法变成加法, 那么现在计算机使用的补码呢? 为什么在反码的基础上加1, 还能得到正确的结果?

2-1=2+(-1) = [0000 0010] + [1000 0001] = [0000 0010] + [1111 1111]

如果把[1111 1111]当成原码, 去除符号位, 则:

[0111 1111] = 127

其实, 在反码的基础上+1, 只是相当于增加了膜的值:

(-1) mod 128 = 127

127 mod 128 = 127

2-1 ≡ 2+127 (mod 128)

此时, 表盘相当于每128个刻度转一轮. 所以用补码表示的运算结果最小值和最大值应该是[-128, 128].

但是由于0的特殊情况, 没有办法表示128, 所以补码的取值范围是[-128, 127]

本人一直不善于数学, 所以如果文中有不对的地方请大家多多包含, 多多指点!


第二篇(基于第一篇):

Java的位运算符与二进制转换

转换:

Java整型数据类型有:byte、char、short、int、long。要把它们转换成二进制的原码形式,必须明白他们各占几个字节。,一个字节==8位数

 数据类型                           所占位数
      byte                                       8 
      boolean                                8
      short                                    16
      int                                         32 
      long                                      64 
      float                                      32 
      double                                  64 
      char                                     16

byte
正数最大位0111 1111,也就是数字127 
负数最大为1111 1111,也就是数字-128
反码与补码
1、反码:
        一个数如果是正,则它的反码与原码相同;
        一个数如果是负,则符号位为1,其余各位是对原码取反;

2、补码:利用溢出,我们可以将减法变成加法
       对于十进制数,从9得到5可用减法:
       9-4=5    因为4+6=10,我们可以将6作为4的补数
       改写为加法:
       9+6=15(去掉高位1,也就是减10)得到5.

       对于十六进制数,从c到5可用减法:
       c-7=5    因为7+9=16 将9作为7的补数
       改写为加法:
       c+9=15(去掉高位1,也就是减16)得到5.

    在计算机中,如果我们用1个字节表示一个数,一个字节有8位,超过8位就进1,在内存中情况为(100000000),进位1被丢弃。

    ⑴一个数为正,则它的原码、反码、补码相同
    ⑵一个数为负,刚符号位为1,其余各位是对原码取反,然后整个数加1
     详细请参考http://www.cnblogs.com/zhangziqiu/archive/2011/03/30/ComputerCode.html
Integer.toHexString的参数是int,如果不进行&0xff,那么当一个byte会转换成int时,由于int是32位,而byte只有8位这时会进行补位,
例如补码11111111的十进制数为-1转换为int时变为11111111111111111111111111111111好多1啊,即0xffffffff但是这个数是不对的,这种补位就会造成误差。
和0xff相与后,高24比特就会被清0了,结果就对了。

还需要明白一点的是:计算机表示数字正负不是用+ -加减号来表示,而是用最高位数字来表示,0表示正,1表示负

在计算机系统中,数值一律用补码来表示(存储)。
主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补
码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。
补码与原码的转换过程几乎是相同的。
数值的补码表示也分两种情况:
(1)正数的补码:与原码相同。
      例如,+9的补码是00001001。
(2)负数的补码:符号位(最高位)为1,其余位为该数绝对值的原码按位取反;然后整个数加1。
      例如,-7的补码:因为是负数,则符号位为“1”,整个为10000111;其余7位为-7的绝对值+7的原码
     0000111按位取反为1111000;再加1,所以-7的补码是11111001。
已知一个数的补码,求原码的操作分两种情况:
(1)如果补码的符号位为“0”,表示是一个正数,所以补码就是该数的原码。
(2)如果补码的符号位为“1”,表示是一个负数,求原码的操作可以是:符号位为1,其余各位取反,然后再整个数加1。
     例如,已知一个补码为11111001,则原码是10000111(-7):因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”;其余7位1111001取反后为0000110;再加1,所以是10000111。

源码:是什么就是什么。负数就是最前面符号位为1。
反码:正的就是补码,负的就是各位取反,0换1,1换0,注意,最高位符号为不变。
补码:正的就是源码,负的就是反码+1
比如: -1 -2
以8位二进制为例
源码:10000001 10000010
反码:11111110 11111101
补码:11111111 11111110
补码这样做的好处是什么呢?
请看-1+(-2)电脑怎么做:
用源码:10000001 + (10000010)=00000011 这是什么?是-3吗?不是,是3。所以不能直接用源码做加法。
用反码:11111110 + (11111101)=11111011 这是什么?是反码的"-4"
用补码:11111111 + (11111110)=11111101 末尾减一再取反得10000011,所以结果是补码的-3。
反码为什么出错?以4位数为例,高位为符号位(括号内为绝对值):
1010 (2)取反 1101 (5)
1011 (3)取反 1100 (4)
然后 -2 + (-3) 变成了 -(5 + 4)超出8的部分舍去,得 1001,再取反得 1110,成了-6
究其原因:各位取反的两数相加:1010+0101=1111必是全1即绝对值为7,2->5,3->4,相对于8共偏差了2,然后9=1mod8,1->6,只修正了1点偏差,
结果就出现了1的偏差。补码中末尾加一就是修正了该偏差,得到正确的结果。即2->6,3->5.相对于8无偏差11=3mod8,3->5。

位运算符:

位移进制运算

带符号右移 题:-15 >> 2 = -4

15原码:   00000000 00000000 00000000 00001111 //32位,二进制
反码:    11111111 11111111 11111111 11110000 //0变1,1变0
补码:    11111111 11111111 11111111 11110001 //最后位加1,-15二进制
右移2位:  11111111 11111111 11111111 11111100 //右边丢弃2位,前面30位保留,左边补1
取反:      00000000 00000000 00000000 00000011 //0变1,1变0
+1:                                       3+1
结果:                                     =-4 //负号保留,十进制

带符号左移 题: 10 << 2 = 40
10 补码:    00000000 00000000 00000000 00001010 //32位,二进制
左移2位:    00000000 00000000 00000000 00101000 //左边丢弃2位,右边补0
结果:                                       40 //十进制
 

无符号右移 题:-4321 >>> 30 = 3
4321原码:         0000000000000000 00010000 11100011 //32位,二进制
反码:           11111111 11111111 11101111 00011100 //0变1,1变0
补码:           11111111 11111111 11101111 00011101 //最后位加1,-4321二进制
无符号右移30位:  00000000 00000000 00000000 00000011 //右边丢弃30位,前面二位保留,左边补0
结果:                                                3 //十进制


& 位逻辑与 题:44 & 21 = 4
44 补码:    00000000 00000000 00000000 00101100 //32位,二进制
21 补码:    00000000 00000000 00000000 00010101 //32位,二进制
& 运算:     00000000 00000000 00000000 00000100 //对应的两个二进制位均为1时 结果位才为1 否则为0
结果:                                         4 //十进制   
                               
| 位逻辑与 题:9 | 5 = 13
9 补码:    00000000 00000000 00000000 00001001 //32位,二进制
5 补码:    00000000 00000000 00000000 00000101 //32位,二进制
| 运算:    00000000 00000000 00000000 00001101 //对应的二个二进制位有一个为1时,结果位就为1
结果:                                       13 //十进制

^ 位逻辑异或 题: 9 ^ 5 = 12
9 补码:    00000000 00000000 00000000 00001001 //32位,二进制
5 补码:    00000000 00000000 00000000 00000101 //32位,二进制
| 运算:    00000000 00000000 00000000 00001100 //对应的二进制位相异时,结果为1
结果:                                       12 //十进制

~ 位逻辑反 题: ~9 = -10
9 补码:    00000000 00000000 00000000 00001001 //32位,二进制
~ 运算:    11111111 11111111 11111111 11110110 //最高位为1表示为一个负数,则进行取反加1
取反:      00000000 00000000 00000000 00001001 //32位,二进制
+1:                                      9+1 //32位,二进制
结果:                                      -10 //十进制

由于数据类型所占字节是有限的,而位移的大小却可以任意大小,所以可能存在位移后超过了该数据类型的表示范围,于是有了这样的规定: 如果为int数据类型,且位移位数大于32位,则首先把位移位数对32取模,不然位移超过总位数没意义的。所以4>>32与4>>0是等价的。

如果为long类型,且位移位数大于64位,则首先把位移位数对64取模,若没超过64位则不用对位数取模。

如果为byte、char、short,则会首先将他们扩充到32位,然后的规则就按照int类型来处理。

 

实际应用:


1.  判断int型变量a是奇数还是偶数    
     a&1  = 0 偶数 
     a&1 =  1 奇数 
2.  求平均值,比如有两个int类型变量x、y,首先要求x+y的和,再除以2,但是有可能x+y的结果会超过int的最大表示范围,所以位运算就派上用场啦。
      (x&y)+((x^y)>>1); 
3.  对于一个大于0的整数,判断它是不是2的几次方
    ((x&(x-1))==0)&&(x!=0); 
4.  比如有两个int类型变量x、y,要求两者数字交换,位运算的实现方法:性能绝对高效
    x ^= y; 
    y ^= x; 
    x ^= y; 
5. 求绝对值
    int abs( int x ) 
   { 
     int y ; 
     y = x >> 31 ; 
    return (x^y)-y ;        //or: (x+y)^y 
   }
6.  取模运算,采用位运算实现:
     a % (2^n) 等价于 a & (2^n - 1) 
7.  乘法运算   采用位运算实现
     a * (2^n) 等价于 a << n
8.   除法运算转化成位运算
      a / (2^n) 等价于 a>> n 
9.   求相反数
      (~x+1) 
10  a % 2 等价于 a & 1


你可能感兴趣的:(android)