java 自旋锁

java 自旋锁_第1张图片

一 大纲

1 自旋锁定义

2 自旋锁原理

3 自旋锁时间阈值

4 自旋锁分类

5 自旋锁应用

6 自旋锁开启

java 自旋锁_第2张图片

二 自旋锁定义

何谓自旋锁?         它是为实现保护共享资源而提出一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名。

java 自旋锁_第3张图片

三 自旋锁原理

     跟互斥锁一样,一个执行单元要想访问被自旋锁保护的共享资源,必须先得到锁,在访问完共享资源后,必须释放锁。如果在获取自旋锁时,没有任何执行单元保持该锁,那么将立即得到锁;如果在获取自旋锁时锁已经有保持者,那么获取锁操作将自旋在那里,直到该自旋锁的保持者释放了锁。由此我们可以看出,自旋锁是一种比较低级的保护数据结构或代码片段的原始方式,这种锁可能存在两个问题: 死锁。试图递归地获得自旋锁必然会引起死锁:递归程序的持有实例在第二个实例循环,以试图获得相同自旋锁时,不会释放此自旋锁。在递归程序中使用自旋锁应遵守下列策略:递归程序决不能在持有自旋锁时调用它自己,也决不能在递归调用时试图获得相同的自旋锁。此外如果一个进程已经将资源锁定,那么,即使其它申请这个资源的进程不停地疯狂“自旋”,也无法获得资源,从而进入死循环。 过多占用cpu资源。如果不加限制,由于申请者一直在循环等待,因此自旋锁在锁定的时候,如果不成功,不会睡眠,会持续的尝试,单cpu的时候自旋锁会让其它process动不了. 因此,一般自旋锁实现会有一个参数限定最多持续尝试次数. 超出后, 自旋锁放弃当前time slice. 等下一次机会。 由此可见,自旋锁比较适用于锁使用者保持锁时间比较短的情况。正是由于自旋锁使用者一般保持锁时间非常短,因此选择自旋而不是睡眠是非常必要的,自旋锁的效率远高于互斥锁。

四 自旋锁时间阀值

自旋锁的目的是为了占着CPU的资源不释放,等到获取到锁立即进行处理。但是如何去选择自旋的执行时间呢?如果自旋执行时间太长,会有大量的线程处于自旋状态占用CPU资源,进而会影响整体系统的性能。因此自旋的周期选的额外重要! JVM对于自旋周期的选择,jdk1.5这个限度是一定的写死的,在1.6引入了适应性自旋锁,适应性自旋锁意味着自旋的时间不在是固定的了,而是由前一次在同一个锁上的自旋时间以及锁的拥有者的状态来决定,基本认为一个线程上下文切换的时间是最佳的一个时间,同时JVM还针对当前CPU的负荷情况做了较多的优化 如果平均负载小于CPUs则一直自旋 如果有超过(CPUs/2)个线程正在自旋,则后来线程直接阻塞 如果正在自旋的线程发现Owner发生了变化则延迟自旋时间(自旋计数)或进入阻塞 如果CPU处于节电模式则停止自旋 自旋时间的最坏情况是CPU的存储延迟(CPU A存储了一个数据,到CPU B得知这个数据直接的时间差) 自旋时会适当放弃线程优先级之间的差异

五 分类

 1、SMP(Symmetric Multi-Processor)  SMP(Symmetric Multi-Processing)对称多处理器结构,指服务器中多个CPU对称工作,每个CPU访问内存地址所需时间相同。其主要特征是共享,包含对CPU,内存,I/O等进行共享。  SMP能够保证内存一致性,但这些共享的资源很可能成为性能瓶颈,随着CPU数量的增加,每个CPU都要访问相同的内存资源,可能导致内存访问冲突,  可能会导致CPU资源的浪费。常用的PC机就属于这种。     2、NUMA(Non-Uniform Memory Access)  非一致存储访问,将CPU分为CPU模块,每个CPU模块由多个CPU组成,并且具有独立的本地内存、I/O槽口等,模块之间可以通过互联模块相互访问,访问本地内存的速度将远远高于访问远地内存(系统内其它节点的内存)的速度,这也是非一致存储访问的由来。NUMA较好地解决SMP的扩展问题,  当CPU数量增加时,因为访问远地内存的延时远远超过本地内存,系统性能无法线性增加。

六 CLH锁

CLH(Craig, Landin, and Hagersten  locks): 是一个自旋锁,能确保无饥饿性,提供先来先服务的公平性。  CLH锁也是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,它不断轮询前驱的状态,如果发现前驱释放了锁就结束自旋。  当一个线程需要获取锁时:  a.创建一个的QNode,将其中的locked设置为true表示需要获取锁  b.线程对tail域调用getAndSet方法,使自己成为队列的尾部,同时获取一个指向其前趋结点的引用myPred  c.该线程就在前趋结点的locked字段上旋转,直到前趋结点释放锁  d.当一个线程需要释放锁时,将当前结点的locked域设置为false,同时回收前趋结点 如下图,线程A需要获取锁,其myNode域为true,tail指向线程A的结点,然后线程B也加入到线程A后面,tail指向线程B的结点。然后线程A和B都在其myPred域上旋转,一旦它的myPred结点的locked字段变为false,它就可以获取锁。明显线程A的myPred locked域为false,此时线程A获取到了锁。

七 CLH锁图文

java 自旋锁_第4张图片

java 自旋锁_第5张图片

 

八 CLH锁分析

CLH队列锁的优点是空间复杂度低(如果有n个线程,L个锁,每个线程每次只获取一个锁,那么需要的存储空间是O(L+n),n个线程有n个。myNode,L个锁有L个tail),CLH的一种变体被应用在了JAVA并发框架中。  CLH在SMP系统结构下该法是非常有效的。但在NUMA系统结构下,每个线程有自己的内存,如果前趋结点的内存位置比较远,自旋判断前趋结点的locked域,性能将大打折扣,一种解决NUMA系统结构的思路是MCS队列锁。

九 MCS锁

MSC与CLH最大的不同并不是链表是显示还是隐式,而是线程自旋的规则不同:CLH是在前趋结点的locked域上自旋等待,而MSC是在自己的结点的locked域上自旋等待。正因为如此,它解决了CLH在NUMA系统架构中获取locked域状态内存过远的问题。 MCS队列锁的具体实现如下:       a. 队列初始化时没有结点,tail=null  b. 线程A想要获取锁,于是将自己置于队尾,由于它是第一个结点,它的locked域为false  c. 线程B和C相继加入队列,a->next=b,b->next=c。且B和C现在没有获取锁,处于等待状态,所以它们的locked域为true,尾指针指向线程C对应的结点  d. 线程A释放锁后,顺着它的next指针找到了线程B,并把B的locked域设置为false。这一动作会触发线程B获取锁

十 MCS锁图文

java 自旋锁_第6张图片

 

十一 自旋锁的开启

 

JDK1.6中-XX:+UseSpinning开启; -XX:PreBlockSpin=10 为自旋次数; JDK1.7后,去掉此参数,由jvm控制; jdk1.5 中aqs 中的自旋锁 ,Linux内核为通用自旋锁提供了 API函数初始化、测试和设置自旋锁。

            +------+  prev +-----+       +-----+

       head |      | <---- |     | <---- |     |  tail    

            +------+       +-----+       +-----+

java 自旋锁_第7张图片

结束

你可能感兴趣的:(java,性能优化)