SensorService在SystemServer进程中启动。
/frameworks/base/ervices/java/com/android/server/SystemServer.java
private void startBootstrapServices() {
...
startSensorService();
}
startSensorService是一个native函数,其具体实现在com_android_server_SystemServer.cpp的android_server_SystemServer_startSensorService函数中。
/frameworks/base/services/core/jni/com_android_server_SystemServer.cpp
static void android_server_SystemServer_startSensorService(JNIEnv* /* env */, jobject /* clazz */) {
char propBuf[PROPERTY_VALUE_MAX];
property_get("system_init.startsensorservice", propBuf, "1");
if (strcmp(propBuf, "1") == 0) {
// Start the sensor service
SensorService::instantiate();
}
}
SensorService::instantiate()的instantiate函数定义在BinderService.h中,目的在于向ServiceManager注册SensorService组件。new SERVICE()参数的传入最终结果是创建SensorService的一个强引用。
/frameworks/native/include/binder/BinderService.h
static void instantiate() { publish(); }
/frameworks/native/include/binder/BinderService.h
static status_t publish(bool allowIsolated = false) {
sp sm(defaultServiceManager());
return sm->addService(
String16(SERVICE::getServiceName()),
new SERVICE(), allowIsolated);
}
onFirstRef函数是RefBase的一个空实现,SensorService继承自RefBase,onFirstRef在第一次被强指针引用时调用,首先是获得一个SensorDevice单例对象。
/frameworks/native/services/sensorservice/SensorService.cpp
void SensorService::onFirstRef()
{
ALOGD("nuSensorService starting...");
SensorDevice& dev(SensorDevice::getInstance());
...
}
看看SensorDevice的默认构造函数:
/frameworks/native/services/sensorservice/SensorDevice.cpp
SensorDevice::SensorDevice()
: mSensorDevice(0),
mSensorModule(0)
{
status_t err = hw_get_module(SENSORS_HARDWARE_MODULE_ID,
(hw_module_t const**)&mSensorModule);
ALOGE_IF(err, "couldn't load %s module (%s)",
SENSORS_HARDWARE_MODULE_ID, strerror(-err));
if (mSensorModule) {
err = sensors_open_1(&mSensorModule->common, &mSensorDevice);
ALOGE_IF(err, "couldn't open device for module %s (%s)",
SENSORS_HARDWARE_MODULE_ID, strerror(-err));
if (mSensorDevice) {
if (mSensorDevice->common.version == SENSORS_DEVICE_API_VERSION_1_1 ||
mSensorDevice->common.version == SENSORS_DEVICE_API_VERSION_1_2) {
ALOGE(">>>> WARNING <<< Upgrade sensor HAL to version 1_3");
}
sensor_t const* list;
ssize_t count = mSensorModule->get_sensors_list(mSensorModule, &list);
mActivationCount.setCapacity(count);
Info model;
for (size_t i=0 ; ilist[i].handle, model);
mSensorDevice->activate(
reinterpret_cast<struct sensors_poll_device_t *>(mSensorDevice),
list[i].handle, 0);
}
}
}
}
hw_get_module是jni层获取HAL层module的接口函数,原型为hareware.c中的:int hw_get_module(const char *id, const struct hw_module_t **module),第一个参数为硬件模块的id,第二个参数指向硬件模块对应的hw_module_t结构体地址。
/hardware/libhardware/hardware.c
int hw_get_module(const char *id, const struct hw_module_t **module)
{
return hw_get_module_by_class(id, NULL, module);
}
/hardware/libhardware/hardware.c
int hw_get_module_by_class(const char *class_id, const char *inst,
const struct hw_module_t **module)
{
int i = 0;
char prop[PATH_MAX] = {0};
char path[PATH_MAX] = {0};
char name[PATH_MAX] = {0};
char prop_name[PATH_MAX] = {0};
if (inst)
snprintf(name, PATH_MAX, "%s.%s", class_id, inst);
else
strlcpy(name, class_id, PATH_MAX);//class_id拷贝到name
/*
* Here we rely on the fact that calling dlopen multiple times on
* the same .so will simply increment a refcount (and not load
* a new copy of the library).
* We also assume that dlopen() is thread-safe.
*/
/* First try a property specific to the class and possibly instance */
//prop_name为ro.hardware.(name),SensorService传下来的class_id为sensors,则prop_name为ro.hardware.sensors
snprintf(prop_name, sizeof(prop_name), "ro.hardware.%s", name);
//获取prop_name的属性值,保存在prop中
if (property_get(prop_name, prop, NULL) > 0) {
//输出固定的文件名格式到path中
if (hw_module_exists(path, sizeof(path), name, prop) == 0) {//
goto found;
}
}
/* Loop through the configuration variants looking for a module */
for (i=0 ; iif (property_get(variant_keys[i], prop, NULL) == 0) {
continue;
}
if (hw_module_exists(path, sizeof(path), name, prop) == 0) {
goto found;
}
}
/* Nothing found, try the default */
if (hw_module_exists(path, sizeof(path), name, "default") == 0) {
goto found;
}
return -ENOENT;
found:
/* load the module, if this fails, we're doomed, and we should not try
* to load a different variant. */
return load(class_id, path, module);
}
/hardware/libhardware/hardware.c
//紧接上面,32位下生成/vendor/lib/hw.sensors.属性值.so或/system/lib/hw.sensors.属性值.so,64位下生成/vendor/lib64/hw.sensors.属性值.so或/system/lib64/hw.sensors.属性值.so
static int hw_module_exists(char *path, size_t path_len, const char *name,
const char *subname)
{
snprintf(path, path_len, "%s/%s.%s.so",
HAL_LIBRARY_PATH2, name, subname);
if (access(path, R_OK) == 0)
return 0;
snprintf(path, path_len, "%s/%s.%s.so",
HAL_LIBRARY_PATH1, name, subname);
if (access(path, R_OK) == 0)
return 0;
return -ENOENT;
}
/hardware/libhardware/hardware.c
//尝试去加载上面路径的so文件
static int load(const char *id,
const char *path,
const struct hw_module_t **pHmi)
{
int status = -EINVAL;
void *handle = NULL;
struct hw_module_t *hmi = NULL;
/*
* load the symbols resolving undefined symbols before
* dlopen returns. Since RTLD_GLOBAL is not or'd in with
* RTLD_NOW the external symbols will not be global
*/
//dlopen以暂缓决定模式打开指定的动态连接库文件,并返回一个句柄给调用进程
handle = dlopen(path, RTLD_NOW);
if (handle == NULL) {
char const *err_str = dlerror();
ALOGE("load: module=%s\n%s", path, err_str?err_str:"unknown");
status = -EINVAL;
goto done;
}
/* Get the address of the struct hal_module_info. */
//dlsym通过句柄和连接符名称获取函数名或者变量名,返回符号的地址
const char *sym = HAL_MODULE_INFO_SYM_AS_STR;
hmi = (struct hw_module_t *)dlsym(handle, sym);
if (hmi == NULL) {
ALOGE("load: couldn't find symbol %s", sym);
status = -EINVAL;
goto done;
}
/* Check that the id matches */
if (strcmp(id, hmi->id) != 0) {
ALOGE("load: id=%s != hmi->id=%s", id, hmi->id);
status = -EINVAL;
goto done;
}
hmi->dso = handle;
/* success */
status = 0;
done:
if (status != 0) {
hmi = NULL;
if (handle != NULL) {
dlclose(handle);
handle = NULL;
}
} else {
ALOGV("loaded HAL id=%s path=%s hmi=%p handle=%p",
id, path, *pHmi, handle);
}
*pHmi = hmi;
return status;
}
硬件抽象层模块中总会定义一个HAL_MODULE_INFO_SYM_AS_STR的符号,HAL_MODULE_INFO_SYM_AS_STR在宏定义中被定义为“HMI”,在这里HAL_MODULE_INFO_SYM_AS_STR是struct sensors_module_t的变量,struct sensors_module_t第一个成员common为struct hw_module_t类型。因为common成员和HAL_MODULE_INFO_SYM_AS_STR首地址相同,所以load函数末尾可以安全地将第二个参数的地址指向这个符号的地址。所以SensorDevice中类型为struct sensors_module_t*的mSensorModule成员指向了HAL_MODULE_INFO_SYM_AS_STR符号的地址。
/hardware/libhardware/include/hardware/sensors.h
struct sensors_module_t {
struct hw_module_t common;
/**
* Enumerate all available sensors. The list is returned in "list".
* @return number of sensors in the list
*/
int (*get_sensors_list)(struct sensors_module_t* module,
struct sensor_t const** list);
/**
* Place the module in a specific mode. The following modes are defined
*
* 0 - Normal operation. Default state of the module.
* 1 - Loopback mode. Data is injected for the the supported
* sensors by the sensor service in this mode.
* @return 0 on success
* -EINVAL if requested mode is not supported
* -EPERM if operation is not allowed
*/
int (*set_operation_mode)(unsigned int mode);
};
此时,sensor模块的so已加载完成。回到SensorDevice的构造函数中,接着调用sensors_open_1函数打开sensor设备。sensors_open_1没有在SensorDevice.cpp中实现,而是在HAL层实现。
/frameworks/native/services/sensorservice/SensorDevice.cpp
...
if (mSensorModule) {
err = sensors_open_1(&mSensorModule->common, &mSensorDevice);
...
/hardware/libhardware/include/hardware/sensors.h
static inline int sensors_open_1(const struct hw_module_t* module,
sensors_poll_device_1_t** device) {
return module->methods->open(module,
SENSORS_HARDWARE_POLL, (struct hw_device_t**)device);
}
该函数接收sensors_module_t的common成员的指针(struct hw_module_t*类型)作为第一个参数,调用参数的struct hw_module_methods_t*类型的methods成员的唯一函数指针成员,即open函数。其中,SENSORS_HARDWARE_POLL在宏定义被定义为“poll”。
/hardware/libhardware/include/hardware/hardware.h
typedef struct hw_module_t {
/** tag must be initialized to HARDWARE_MODULE_TAG */
uint32_t tag;
/**
* The API version of the implemented module. The module owner is
* responsible for updating the version when a module interface has
* changed.
*
* The derived modules such as gralloc and audio own and manage this field.
* The module user must interpret the version field to decide whether or
* not to inter-operate with the supplied module implementation.
* For example, SurfaceFlinger is responsible for making sure that
* it knows how to manage different versions of the gralloc-module API,
* and AudioFlinger must know how to do the same for audio-module API.
*
* The module API version should include a major and a minor component.
* For example, version 1.0 could be represented as 0x0100. This format
* implies that versions 0x0100-0x01ff are all API-compatible.
*
* In the future, libhardware will expose a hw_get_module_version()
* (or equivalent) function that will take minimum/maximum supported
* versions as arguments and would be able to reject modules with
* versions outside of the supplied range.
*/
uint16_t module_api_version;
#define version_major module_api_version
/**
* version_major/version_minor defines are supplied here for temporary
* source code compatibility. They will be removed in the next version.
* ALL clients must convert to the new version format.
*/
/**
* The API version of the HAL module interface. This is meant to
* version the hw_module_t, hw_module_methods_t, and hw_device_t
* structures and definitions.
*
* The HAL interface owns this field. Module users/implementations
* must NOT rely on this value for version information.
*
* Presently, 0 is the only valid value.
*/
uint16_t hal_api_version;
#define version_minor hal_api_version
/** Identifier of module */
const char *id;
/** Name of this module */
const char *name;
/** Author/owner/implementor of the module */
const char *author;
/** Modules methods */
struct hw_module_methods_t* methods;
/** module's dso */
void* dso;
#ifdef __LP64__
uint64_t reserved[32-7];
#else
/** padding to 128 bytes, reserved for future use */
uint32_t reserved[32-7];
#endif
} hw_module_t;
/hardware/libhardware/include/hardware/hardware.h
typedef struct hw_module_methods_t {
/** Open a specific device */
int (*open)(const struct hw_module_t* module, const char* id,
struct hw_device_t** device);
} hw_module_methods_t;
sensors.h为我们提供了HAL层的接口,实现部分则在sensors.c或sensors.cpp完成。sensors.cpp定义了一个hw_module_methods_t类型的变量sensors_module_methods,并且指定open函数的实现为open_sensors函数。
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
static struct hw_module_methods_t sensors_module_methods = {
.open = open_sensors
};
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
static int open_sensors(const struct hw_module_t* module, const char* id,
struct hw_device_t** device)
{
UNUSE(id);
LOGD("open_sensors()");
int status = -EINVAL;
sensors_poll_context_t *dev = new sensors_poll_context_t();
if (!dev->isValid()) {
ALOGE("Failed to open the sensors");
return status;
}
memset(&dev->device, 0, sizeof(sensors_poll_device_t));
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = SENSORS_DEVICE_API_VERSION_1_0;
dev->device.common.module = const_cast(module);
dev->device.common.close = poll__close;
dev->device.activate = poll__activate;
dev->device.setDelay = poll__setDelay;
dev->device.poll = poll__poll;
*device = &dev->device.common;
status = 0;
return status;
}
open_sensors函数首先new了一个sensors_poll_context_t对象。
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
struct sensors_poll_context_t {
struct sensors_poll_device_t device; // must be first
sensors_poll_context_t();
~sensors_poll_context_t();
int activate(int handle, int enabled);
int setDelay(int handle, int64_t ns);
int setDelay_sub(int handle, int64_t ns);
int pollEvents(sensors_event_t* data, int count);
private:
enum {
acc = 0,
akm = 1,
numSensorDrivers,
numFds,
};
static const size_t wake = numFds - 1;
static const char WAKE_MESSAGE = 'W';
struct pollfd mPollFds[numFds];
int mWritePipeFd;
SensorBase* mSensors[numSensorDrivers];
/* These function will be different depends on
* which sensor is implemented in AKMD program.
*/
int handleToDriver(int handle);
int proxy_enable(int handle, int enabled);
int proxy_setDelay(int handle, int64_t ns);
};
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
sensors_poll_context_t::sensors_poll_context_t()
{
#ifdef SENSORHAL_ACC_ADXL346
mSensors[acc] = new AdxlSensor();
#endif
#ifdef SENSORHAL_ACC_KXTF9
mSensors[acc] = new KionixSensor();
#endif
mPollFds[acc].fd = mSensors[acc]->getFd();
mPollFds[acc].events = POLLIN;
mPollFds[acc].revents = 0;
mSensors[akm] = new AkmSensor();
mPollFds[akm].fd = mSensors[akm]->getFd();
mPollFds[akm].events = POLLIN;
mPollFds[akm].revents = 0;
int wakeFds[2];
int result = pipe(wakeFds);
ALOGE_IF(result<0, "error creating wake pipe (%s)", strerror(errno));
fcntl(wakeFds[0], F_SETFL, O_NONBLOCK);
fcntl(wakeFds[1], F_SETFL, O_NONBLOCK);
mWritePipeFd = wakeFds[1];
mPollFds[wake].fd = wakeFds[0];
mPollFds[wake].events = POLLIN;
mPollFds[wake].revents = 0;
}
sensors_poll_context_t的构造函数主要工作是使用poll监听AdxlSensor,KionixSensor和创建的管道读端的POLLIN事件。
回到open_sensors函数,接着对sensors_poll_context_t的成员作初始化。sensors_poll_context_t的首个成员为sensors_poll_device_t,而sensors_poll_device_t的首个成员是hw_device_t,这三个类型的变量首地址是相同的,所以它们的指针可以相互安全地进行转换。最后把传下来的第二个指针参数指向已被初始化的hw_device_t成员地址。
hw_get_module和sensors_open_1这两个函数保存了HAL层对应的hw_module_t类型和hw_device_t类型的指针。再次返回SenosrDevice的构造函数,接下来用get_sensors_list去获取sensor的列表。
/frameworks/native/services/sensorservice/SensorDevice.cpp
...
sensor_t const* list;
ssize_t count = mSensorModule->get_sensors_list(mSensorModule, &list);
mActivationCount.setCapacity(count);
...
同样地,get_sensors_list方法的设置出现在HMI符号中,然后调到sensors__get_sensors_list方法,最后获取到struct sensor_t数组,并使传下来的第二个参数指向该数组的地址,其中sensor_t的作用是记录sensor的信息参数,一个sensor设备对应一个sensor_t结构体。
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 0,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "AKM Sensor module",
.author = "Asahi Kasei Microdevices",
.methods = &sensors_module_methods,
.dso = NULL,
.reserved = {0},
},
.get_sensors_list = sensors__get_sensors_list,
};
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
static int sensors__get_sensors_list(struct sensors_module_t* module,
struct sensor_t const** list)
{
*list = sSensorList;
return ARRAY_SIZE(sSensorList);
}
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
static const struct sensor_t sSensorList[] = {
{ "AK8975 3-axis Magnetic field sensor",
"Asahi Kasei Microdevices",
1,
SENSORS_MAGNETIC_FIELD_HANDLE,
SENSOR_TYPE_MAGNETIC_FIELD, 1228.8f,
CONVERT_M, 0.35f, 10000, 0, 0, 0, 0, 0, 0, { } },
#ifdef SENSORHAL_ACC_ADXL346
{ "Analog Devices ADXL345/6 3-axis Accelerometer",
"ADI",
1, SENSORS_ACCELERATION_HANDLE,
SENSOR_TYPE_ACCELEROMETER, (GRAVITY_EARTH * 16.0f),
(GRAVITY_EARTH * 16.0f) / 4096.0f, 0.145f, 10000, 0, 0, 0, 0, 0, 0, { } },
{ "AK8975 Orientation sensor",
"Asahi Kasei Microdevices",
1, SENSORS_ORIENTATION_HANDLE,
SENSOR_TYPE_ORIENTATION, 360.0f,
CONVERT_O, 0.495f, 10000, 0, 0, 0, 0, 0, 0, { } }
#endif
#ifdef SENSORHAL_ACC_KXTF9
{ "Kionix KXTF9 3-axis Accelerometer",
"Kionix",
1, SENSORS_ACCELERATION_HANDLE,
SENSOR_TYPE_ACCELEROMETER, (GRAVITY_EARTH * 2.0f),
(GRAVITY_EARTH) / 1024.0f, 0.7f, 10000, 0, 0, 0, 0, 0, 0, { } },
{ "AK8975 Orientation sensor",
"Asahi Kasei Microdevices",
1, SENSORS_ORIENTATION_HANDLE,
SENSOR_TYPE_ORIENTATION, 360.0f,
CONVERT_O, 1.05f, 10000, 0, 0, 0, 0, 0, 0, { } }
#endif
};
回到SensorDevice的构造函数中,最后一步是使用activate方法对上面sensor列表的sensor进行激活。同理,activate方法最终会调到sensors_poll_context_t::activate方法。
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
static int poll__activate(struct sensors_poll_device_t *dev,
int handle, int enabled) {
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
return ctx->activate(handle, enabled);
}
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
int sensors_poll_context_t::activate(int handle, int enabled) {
int drv = handleToDriver(handle);
int err;
switch (handle) {
case ID_A:
case ID_M:
/* No dependencies */
break;
case ID_O:
/* These sensors depend on ID_A and ID_M */
mSensors[handleToDriver(ID_A)]->setEnable(ID_A, enabled);
mSensors[handleToDriver(ID_M)]->setEnable(ID_M, enabled);
break;
default:
return -EINVAL;
}
err = mSensors[drv]->setEnable(handle, enabled);
if (enabled && !err) {
const char wakeMessage(WAKE_MESSAGE);
int result = write(mWritePipeFd, &wakeMessage, 1);
ALOGE_IF(result<0, "error sending wake message (%s)", strerror(errno));
}
return err;
}
下面以AdxlSensor为例进行说明:
如果AdxlSensor没有被激活且enabled参数为1,只将mEnables加1。
如果AdxlSensor已经被首次激活了,则往/sys/class/input/(input_name)/device/device/disable中写入“1”,将mEnable减1。注意到这里传下来的enabled参数为0,AdxlSensor构造函数中把mEnabled初始化为0,也就是说SensorDevice初始化时不会将相关Sensor使能,要使Sensor使能,需要应用层调到native层使能。
/hardware/akm/AK8975_FS/libsensors/AdxlSensor.cpp
int AdxlSensor::setEnable(int32_t handle, int enabled) {
int err = 0;
char buffer[2];
/* handle check */
if (handle != ID_A) {
ALOGE("AdxlSensor: Invalid handle (%d)", handle);
return -EINVAL;
}
buffer[0] = '\0';
buffer[1] = '\0';
if (mEnabled <= 0) {
if(enabled) buffer[0] = '0';
} else if (mEnabled == 1) {
if(!enabled) buffer[0] = '1';
}
if (buffer[0] != '\0') {
strcpy(&input_sysfs_path[input_sysfs_path_len], "disable");
err = write_sys_attribute(input_sysfs_path, buffer, 1);
if (err != 0) {
return err;
}
ALOGD("AdxlSensor: Control set %s", buffer);
setInitialState();
}
if (enabled) {
mEnabled++;
if (mEnabled > 32767) mEnabled = 32767;
} else {
mEnabled--;
if (mEnabled < 0) mEnabled = 0;
}
ALOGD("AdxlSensor: mEnabled = %d", mEnabled);
return err;
}
AdxlSensor传给SensorBase构造函数的两个参数分别是NULL, ADXL_DATA_NAME,在宏定义被定义为”ADXL34x accelerometer”。之后调用openInput(ADXL_DATA_NAME)打开输入设备。
/hardware/akm/AK8975_FS/libsensors/SensorBase.cpp
SensorBase::SensorBase(
const char* dev_name,
const char* data_name)
: dev_name(dev_name), data_name(data_name),
dev_fd(-1), data_fd(-1)
{
if (data_name) {
data_fd = openInput(data_name);
}
}
openInput函数在/dev/input目录下查找设备名称。Linux内核提供了一个Input子系统,Input子系统会在/dev/input/路径下创建我们硬件输入设备的节点,一般情况下在我们的手机中这些节点是以eventXX来命名的,如event0,event1等等,可以利用EVIOCGNAME获取此事件结点名称。open(devname, O_RDONLY)打开了设备节点,strcpy(input_name, filename)将设备名拷贝到input_name中。
/hardware/akm/AK8975_FS/libsensors/SensorBase.cpp
int SensorBase::openInput(const char* inputName) {
int fd = -1;
const char *dirname = "/dev/input";
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
fd = open(devname, O_RDONLY);
if (fd>=0) {
char name[80];
if (ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
name[0] = '\0';
}
if (!strcmp(name, inputName)) {
strcpy(input_name, filename);
break;
} else {
close(fd);
fd = -1;
}
}
}
closedir(dir);
ALOGE_IF(fd<0, "couldn't find '%s' input device", inputName);
return fd;
}
这样,SensorDevice的构造函数便介绍完毕。
回到SensorService的onFirstRef函数,SensorService继承自Thread,函数末尾调用run进入threadLoop方法。
/frameworks/native/services/sensorservice/SensorService.cpp
...
run("SensorService", PRIORITY_URGENT_DISPLAY);
...
threadLoop方法中调用了SensorDevice::poll方法,mSensorEventBuffer是一个struct sensors_event_t数组。每个传感器的数据都由struct sensors_event_t表示。
/frameworks/native/services/sensorservice/SensorService.cpp
...
do {
ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
if (count < 0) {
ALOGE("sensor poll failed (%s)", strerror(-count));
break;
}
...
/hardware/libhardware/include/hardware/sensors.h
typedef struct sensors_event_t {
/* must be sizeof(struct sensors_event_t) */
int32_t version;
/* sensor identifier */
int32_t sensor;
/* sensor type */
int32_t type;
/* reserved */
int32_t reserved0;
/* time is in nanosecond */
int64_t timestamp;
union {
union {
float data[16];
/* acceleration values are in meter per second per second (m/s^2) */
sensors_vec_t acceleration;
/* magnetic vector values are in micro-Tesla (uT) */
sensors_vec_t magnetic;
/* orientation values are in degrees */
sensors_vec_t orientation;
/* gyroscope values are in rad/s */
sensors_vec_t gyro;
/* temperature is in degrees centigrade (Celsius) */
float temperature;
/* distance in centimeters */
float distance;
/* light in SI lux units */
float light;
/* pressure in hectopascal (hPa) */
float pressure;
/* relative humidity in percent */
float relative_humidity;
/* uncalibrated gyroscope values are in rad/s */
uncalibrated_event_t uncalibrated_gyro;
/* uncalibrated magnetometer values are in micro-Teslas */
uncalibrated_event_t uncalibrated_magnetic;
/* heart rate data containing value in bpm and status */
heart_rate_event_t heart_rate;
/* this is a special event. see SENSOR_TYPE_META_DATA above.
* sensors_meta_data_event_t events are all reported with a type of
* SENSOR_TYPE_META_DATA. The handle is ignored and must be zero.
*/
meta_data_event_t meta_data;
};
union {
uint64_t data[8];
/* step-counter */
uint64_t step_counter;
} u64;
};
/* Reserved flags for internal use. Set to zero. */
uint32_t flags;
uint32_t reserved1[3];
} sensors_event_t;
SensorDevice::poll函数最终会调到sensors_poll_context_t::pollEvents函数。
/frameworks/native/services/sensorservice/SensorDevice.cpp
ssize_t SensorDevice::poll(sensors_event_t* buffer, size_t count) {
if (!mSensorDevice) return NO_INIT;
ssize_t c;
do {
c = mSensorDevice->poll(reinterpret_cast<struct sensors_poll_device_t *> (mSensorDevice),
buffer, count);
} while (c == -EINTR);
return c;
}
如果前面监听的Sensor描述符(AdxlSensor和KionixSensor)发生了POLLIN事件或者有未处理的事件,则调用readEvents去处理这些事件。readEvents返回值nb为读得的事件数量,count为传回上层的事件容量,data记录了sensors_event_t结构体数组的当前保存位置。每次读出事件后,都会对这三个变量作处理。
如果还有剩余容量(count>0),则会抓住最后机会使用poll争取获得事件,nbEvents记录了每次进入pollEvents读到的事件总数量。若nbEvents大于0,poll的时间参数为0,表示立即返回;若nbEvents等于0,poll的时间参数为-1,表示一直阻塞到读取到事件。若此时有线程从管道唤醒poll,则会对唤醒事件作处理(实质就是使 mPollFds[wake]的revents恢复默认值)。若poll成功读取到事件且还有剩余容量,则再次进入pollEvents的主循环。
第一次进入pollEvents函数时,由于还没有poll,mPollFds中的所有Sensor的fd都不会有变化,所以会阻塞在poll调用中,直到Sensor发生了事件或者有线程从管道将其唤醒。之后再次进入主循环调用readEvents读取Sensor事件(如果Sensor发生POLLIN事件的话),count没有满的情况下,然后再次进入poll函数,这样一直循环下去,直到poll没有事件返回且没有事件容量才会退出循环。
/hardware/akm/AK8975_FS/libsensors/Sensors.cpp
int sensors_poll_context_t::pollEvents(sensors_event_t* data, int count)
{
int nbEvents = 0;
int n = 0;
do {
// see if we have some leftover from the last poll()
for (int i=0 ; count && iif ((mPollFds[i].revents & POLLIN) || (sensor->hasPendingEvents())) {
int nb = sensor->readEvents(data, count);
if (nb < count) {
// no more data for this sensor
mPollFds[i].revents = 0;
}
if ((0 != nb) && (acc == i)) {
((AkmSensor*)(mSensors[akm]))->setAccel(&data[nb-1]);
}
count -= nb;
nbEvents += nb;
data += nb;
}
}
if (count) {
// we still have some room, so try to see if we can get
// some events immediately or just wait if we don't have
// anything to return
n = poll(mPollFds, numFds, nbEvents ? 0 : -1);
if (n<0) {
ALOGE("poll() failed (%s)", strerror(errno));
return -errno;
}
if (mPollFds[wake].revents & POLLIN) {
char msg;
int result = read(mPollFds[wake].fd, &msg, 1);
ALOGE_IF(result<0, "error reading from wake pipe (%s)", strerror(errno));
ALOGE_IF(msg != WAKE_MESSAGE, "unknown message on wake queue (0x%02x)", int(msg));
mPollFds[wake].revents = 0;
}
}
// if we have events and space, go read them
} while (n && count);
return nbEvents;
}
readEvents中如果有未处理事件,则将sensors_event_t类型的未处理事件指针保存在第一个参数中。mInputReader类型为class InputEventCircularReader,是用来填充struct input_event输入事件的环形缓冲区。data_fd为openInput的返回值,即打开的输入设备的fd。AdxlSensor的构造函数将4传给InputEventCircularReader构造函数参数,mBuffer初始化为8个input_event大小的内存,以暂存读取超出环形缓冲区的部分。mBufferEnd指向环形缓冲的末尾,mHead记录了下次填充input_event的位置,mCurr记录了最后一个填充的input_event的位置,mFreeSpace记录了空闲的input_event大小的内存块数量。fill函数从输入设备中读取input_event事件到环形缓冲区中,当读取的大小超过缓冲区大小时,会将超出部分覆盖到缓冲区起始部分。
while循环里读取mCurr记录的input_event的类型来执行操作,循环的条件是环形缓冲区还有数据可以读且需要读取事件的余量count大于0。AdxlSensor是一个加速度传感器,读取的事件类型为EV_ABS,可以用来判断手机屏幕的方向。x轴,y轴是以屏幕左下角为原点向右和向上的方向,z轴是垂直于屏幕指向屏幕外面的方向。在一个时刻,只有一个轴读取到加速度值。使用ADXL_UNIT_CONVERSION宏将内核层读到的重力加速度值转化为标准单位重力加速度值。在三轴上计算得到的数据用以初始化一个mPendingEvent。读取事件类型为EV_SYN时(EV_SYN是用于事件间的分割标志。事件可能按时间或空间进行分割,就像在多点触摸协议中的例子),设定mPendingEvent的时间戳为输入事件发生的时间,将mPendingEvent指针保存在data参数中。这样,readEvents函数将底层传上来的input_event填充到入参data中。SensorService便保存了来自底层的input_event包装而成的sensors_event_t事件。readEvents的返回值就是保存到data参数中的
input_event数量。
值得注意的是,readEvents的入参data是对sensors_poll_context_t::pollEvents的入参data指针值的拷贝,readEvents中能改变data指向的数组的内容,但不能改变指针的指向的位置。所以,当readEvents函数返回了读取的事件数时,sensors_poll_context_t::pollEvents的入参data表示的数组内容已经改变,指向的位置和调用readEvents前的位置相同。
/hardware/akm/AK8975_FS/libsensors/AdxlSensor.cpp
int AdxlSensor::readEvents(sensors_event_t* data, int count)
{
if (count < 1)
return -EINVAL;
if (mHasPendingEvent) {
mHasPendingEvent = false;
mPendingEvent.timestamp = getTimestamp();
*data = mPendingEvent;
return mEnabled ? 1 : 0;
}
ssize_t n = mInputReader.fill(data_fd);
if (n < 0)
return n;
int numEventReceived = 0;
input_event const* event;
while (count && mInputReader.readEvent(&event)) {
int type = event->type;
if (type == EV_ABS) {
float value = event->value;
if (event->code == EVENT_TYPE_ACCEL_X) {
mPendingEvent.acceleration.x = ADXL_UNIT_CONVERSION(value);
} else if (event->code == EVENT_TYPE_ACCEL_Y) {
mPendingEvent.acceleration.y = ADXL_UNIT_CONVERSION(value);
} else if (event->code == EVENT_TYPE_ACCEL_Z) {
mPendingEvent.acceleration.z = ADXL_UNIT_CONVERSION(value);
}
} else if (type == EV_SYN) {
mPendingEvent.timestamp = timevalToNano(event->time);
if (mEnabled) {
*data++ = mPendingEvent;
count--;
numEventReceived++;
}
} else {
ALOGE("AdxlSensor: unknown event (type=%d, code=%d)",
type, event->code);
}
mInputReader.next();
}
return numEventReceived;
}
/hardware/akm/AK8975_FS/libsensors/InputEventReader.h
class InputEventCircularReader
{
struct input_event* const mBuffer;
struct input_event* const mBufferEnd;
struct input_event* mHead;
struct input_event* mCurr;
ssize_t mFreeSpace;
public:
InputEventCircularReader(size_t numEvents);
~InputEventCircularReader();
ssize_t fill(int fd);
ssize_t readEvent(input_event const** events);
void next();
};
/hardware/akm/AK8975_FS/libsensors/InputEventReader.h
InputEventCircularReader::InputEventCircularReader(size_t numEvents)
: mBuffer(new input_event[numEvents * 2]),
mBufferEnd(mBuffer + numEvents),
mHead(mBuffer),
mCurr(mBuffer),
mFreeSpace(numEvents)
{
}
/hardware/akm/AK8975_FS/libsensors/InputEventReader.cpp
ssize_t InputEventCircularReader::fill(int fd)
{
size_t numEventsRead = 0;
if (mFreeSpace) {
const ssize_t nread = read(fd, mHead, mFreeSpace * sizeof(input_event));
if (nread<0 || nread % sizeof(input_event)) {
// we got a partial event!!
return nread<0 ? -errno : -EINVAL;
}
numEventsRead = nread / sizeof(input_event);
if (numEventsRead) {
mHead += numEventsRead;
mFreeSpace -= numEventsRead;
if (mHead > mBufferEnd) {
size_t s = mHead - mBufferEnd;
memcpy(mBuffer, mBufferEnd, s * sizeof(input_event));
mHead = mBuffer + s;
}
}
}
return numEventsRead;
}
/bionic/libc/kernel/uapi/linux
struct input_event {
//按键时间
struct timeval time;
//类型
__u16 type;
//模拟成的按键
__u16 code;
//按下还是释放
__s32 value;
};
至此,Android Sensor的HAL层代码大致分析完毕。