Spring Boot 20天入门(day10)

Spring Boot 20天入门(day10)

    • Springboot与搜索
      • ElasticSearch
      • ElasticSearch查询语法
        • _cat API
        • Search API
        • Query and filter context
      • ElasticSearch查询示例
        • _Cat API查询示例
          • _Cat API查询集群的健康情况
        • _Search API查询示例
          • 创建索引
          • 插入数据
          • 查询数据
            • 查询所有
            • 查询特定字段,并按照某个字段进行排序
            • 查询特定字段,并指定输出字段
            • bool组合复杂查询
            • 聚合查询
      • Springboot2.x整合 Elastic Search

Springboot与搜索

ElasticSearch

基本概念:

  • Index:一系列文档的集合,类似于mysql中的数据库
  • Type:在Index里面可以定义不同的type,type的概念类似于mysql中的表。
  • Document:文档的概念类似于mysql中的一条存储记录,并且为json格式,在Index下的不同type下,可以有许多的document
  • Shards:在数据量很大的时候,进行水平的扩展,提高搜索性能
  • Replicas:防止某个分片的数据丢失,可以并行在备份数据里及搜索提高性能

ElasticSearch查询语法

_cat API

  • cat:输出_cat api中所有支持的查询命令
  • cat health:检查es集群运行的情况
  • cat count:可以快速的查询集群或者index中文档的数量
  • cat indices: 查询当前集群中所有index的数据,包括index的分片数、document的数量、存储所用的空间大小…
  • 其他cat api参考官方文档: https://www.elastic.co/guide/en/elasticsearch/reference/5.5/cat.html

Search API

查询方式:

REST request URI:轻便快速的URI查询语法

REST request body:可以有许多限制条件的json格式查询方法

“query”:请求体中的query允许我们用Query DSL的方式查询。

​ “term”:查询时判断某个document是否包含某个具体的值,不会对被查询的值进行分词查询

​ “match” : 将被查询值进行分词,然后用评分机制(TF/IDF)进行打分

​ “match_phrase”:查询指定段落

​ “Bool”:结合其他真值查询,通常和[must should mustnot](与或非)一起组合出复杂的查询

​ “range”:查询时指定某个字段在某个特定的范围

"range": {
      "FIELD": {# 指定具体过滤的字段
        "gte": 1,# gte: >=, gt: >
        "lte": 10
      }
    }

​ “from”:以一定的偏移量来查看我们检索的结果,默认从检索的第一条数据开始显示(0位置开始)

​ “size”:允许我们将检索的结果以指定的字段进行排序显示

​ “_source”:指定检索结果输出的字段

​ “script_fields”:该类型允许我们通过一个脚本来计算document中不存在的值,比如我们需要计算install/click得到cti之类的

"script_fields": {
    "FIELD": {# 指定脚本计算之后值得名称
      "script": {# 脚本内的运算
      }
    }
  }

​ “aggs”:基于搜索查询,可以嵌套去和来组合复杂的需求

"aggs": {
    "NAME": {# 指定结果的名称
      "AGG_TYPE": {# 指定具体的聚合方法,
        TODO: # 聚合体内制定具体的聚合字段
      }
    }
    TODO: # 该处可以嵌套聚合
  }

Query and filter context

查询语句的性为取决于它是使用查询型上下文还是过滤型上下文

  • Query context:在这种上下文环境中,查询语句的返回结果是**”结果和查询语句的匹配程序如何“**,返回的结果数据中都会带上_score值,象征匹配程度。
  • Filter context:过滤型上下文环境中,查询语句则表面匹配与否(yes or no)。es内置式为filter context保存缓存用来提高查询性能,因此filter contextquery context查询的速度快

ElasticSearch查询示例

_Cat API查询示例

_Cat API查询集群的健康情况

Spring Boot 20天入门(day10)_第1张图片

_Search API查询示例

创建索引

URI

PUT localhost:9200/test

Output

{
    "acknowledged": true,
    "shards_acknowledged": true,
    "index": "test"
}
插入数据

URI

PUT localhost:9200/test/user/1

Body

{
	"username" : "张三",
	"password" : "123546",
	"age" : "18",
	"yyyymmdd" : "2017-08-07T16:00:00"
}

Output

{
    "_index": "test", # 索引
    "_type": "user", # type类型
    "_id": "1", # 唯一id,如果不指定将自动生成一个自增的uuid,且这个uuid永不重复
    "_version": 1,# 版本,每提交一个重复的版本+1
    "result": "created",# 操作
    "_shards": { # 拓展
        "total": 2,
        "successful": 1,
        "failed": 0
    },
    "_seq_no": 0,
    "_primary_term": 1
}
查询数据
查询所有

URI

GET localhost:9200/test/user/_search?q=*

Request Body

GET localhost:9200/test/user/_search
{
	"query":{
		"match_all":{}
	}
}

Output

{
	"took": 1121,
	"timed_out": false,
	"_shards": {
		"total": 1,
		"successful": 1,
		"skipped": 0,
		"failed": 0
	},
	"hits": {
		"total": {
			"value": 1,
			"relation": "eq"
		},
		"max_score": 1.0,
		"hits": [
			{
				"_index": "test",
				"_type": "user",
				"_id": "1",
				"_score": 1.0,
				"_source": {
					"username": "张三",
					"password": "123546",
					"age": "18",
					"yyyymmdd": "2017-08-07T16:00:00"
				}
			}
		]
	}
}
查询特定字段,并按照某个字段进行排序

URI

GET localhost:9200/test/user/_search?q=username:张三&&sort=yyyymmdd:asc

Request Body

GET localhost:9200/test/user/_search
{
    "query": {
        "match": {
            "username": "张三"
        }
    },
    "sort": [
        {
            "yyyymmdd": {
                "order": "desc"
            }
        }
    ]
}
查询特定字段,并指定输出字段

RequestBody

localhost:9200/test/user/_search
{
    "query": {
   {
                    "match": {
                        "username": "张三"
                    }
                }
        
    },
    "sort": [
        {
            "yyyymmdd": {
                "order": "desc"
            }
        }
    ],
    "_source": [
        "yyyymmdd",
        "username"
    ]
}

Output

{
    "took": 4,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 1,
            "relation": "eq"
        },
        "max_score": null,
        "hits": [
            {
                "_index": "test",
                "_type": "user",
                "_id": "1",
                "_score": null,
                "_source": {
                    "yyyymmdd": "2017-08-07T16:00:00",
                    "username": "张三"
                },
                "sort": [
                    1502121600000
                ]
            }
        ]
    }
}
bool组合复杂查询

Request Body

GET localhost:9200/test/user/_search
{
    "query": {
        "bool": {
            "must": [
                {
                    "match": {
                        "username": "张三"
                    }
                }
            ],
            "must_not": [
                {
                    "range": {
                        "age": {
                        	"gt" : 18
                        }
                    }
                }
            ],"should" : [
            	{
            		"match" : {
            			"yyyymmdd" : "2017-08-07T16:00:00"
            		}
            	}]
        }
    },
    "sort": [
        {
            "yyyymmdd": {
                "order": "desc"
            }
        }
    ],
    "_source": [
        "yyyymmdd",
        "username"
    ],
    "highlight": {
        "fields": {
            "username": {}
        }
    }
}

Output

{
    "took": 328,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "skipped": 0,
        "failed": 0
    },
    "hits": {
        "total": {
            "value": 1,
            "relation": "eq"
        },
        "max_score": null,
        "hits": [
            {
                "_index": "test",
                "_type": "user",
                "_id": "1",
                "_score": null,
                "_source": {
                    "yyyymmdd": "2017-08-07T16:00:00",
                    "username": "张三"
                },
                "highlight": {
                    "username": [ # 高亮的字段
                        ""
                    ]
                },
                "sort": [
                    1502121600000
                ]
            }
        ]
    }
}
聚合查询

下例是类似于sql中的聚合查询,查询每天不同类型对应的intall总量

Requst Body

PUT /rta_daily_report/campaign/164983850_rba_20170808?pretty
{
  "doc": {
    "cid": 164983850,
    "advertiser_id": 799,
    "trace_app_id": "com.zeptolab.cats.google",
    "network_cid": "6656665",
    "platform": 1,
    "direct": 2,
    "last_second_domain": "",
    "jump_type": 2,
    "direct_trace_app_id": "",
    "mode": 0,
    "third": "kuaptrk.com",
    "hops": 9,
    "yyyymmdd": "2017-08-07T16:00:00",
    "type": "rba",
    "click": 2
  }
}
GET localhost:9200/test/user/_search
{
  "size": 0,
  "aggs": {
    "sum_install": {
      "date_histogram": {
        "field": "yyyymmdd",
        "interval": "day"
      },
      "aggs": {
        "types": {
          "terms": {
            "field": "type.keyword",
            "size": 10
          },
          "aggs": {
            "install": {
              "sum": {
                "field": "install"
              }
            }
          }
        }
      }
    }
  }
}

Output

"aggregations": {
    "sum_install": {
      "buckets": [
        {
          "key_as_string": "2017-07-31T00:00:00.000Z",
          "key": 1501459200000,
          "doc_count": 659553,
          "types": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "rba",
                "doc_count": 321811,
                "install": {
                  "value": 73835
                }
              },
              {
                "key": "m_normal",
                "doc_count": 321711,
                "install": {
                  "value": 18964
                }
              }

script查询
下例通过document中的click,install字段,计算出文档中不存在的数据。

GET /rta_daily_report/campaign/_search?pretty
{
    "query" : {
      "bool": {
        "must": [
          {
            "range": {
              "click": {
                "gt": 0
              }
            }
          },
          {
            "range": {
              "install": {
                "gt": 0
              }
            }
          }
        ]
    }},
    "size": 100, 
    "script_fields": {
      "cti": {
        "script": {
          "lang": "painless",
          "inline": "1.0 * doc['install'].value / doc['click'].value"
        }
      }
    }
}

Output

"hits": {
    "total": 23036,
    "max_score": 2,
    "hits": [
      {
        "_index": "rta_daily_report",
        "_type": "campaign",
        "_id": "160647918_rta_20170801",
        "_score": 2,
        "fields": {
          "cti": [
            0.0005970149253731343
          ]
        }
      },
      {
        "_index": "rta_daily_report",
        "_type": "campaign",
        "_id": "162293741_rta_20170801",
        "_score": 2,
        "fields": {
          "cti": [
            0.00007796055196070789
          ]
        }
      },

Springboot2.x整合 Elastic Search

引入依赖

  <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-data-elasticsearchartifactId>
  dependency>
  <dependency>
            <groupId>org.projectlombokgroupId>
            <artifactId>lombokartifactId>
            <version>1.18.12version>
  dependency>

实体类

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;

import java.io.Serializable;

/**
 * @Description : TODO
 * @Author : Weleness
 * @Date : 2020/05/30
 */
// 索引,类型
@Document(indexName = "student",type = "weleness",shards = 1,replicas = 0)
@Data
@NoArgsConstructor
@AllArgsConstructor
public class Student implements Serializable {


    private static final long serialVersionUID = 4315447603254880943L;

    // 当作主键
    @Id
    private String id;

    @Field(type = FieldType.Keyword)
    private String name;
    @Field(type = FieldType.Integer)
    private Integer age;

    @Field(type = FieldType.Double)
    private Double score;

    @Field(type = FieldType.Text)
    private String info;

}

repository

import com.github.springbootelasticsearch.bean.Student;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;

import java.util.List;

/**
 * @author Weleness
 * @date 2020/05/30
 * @description TODO
 */
// 这个接口封装了我们一些基本的crud操作,也可以添加我们自己的一些自定义方法
public interface EsRepository extends ElasticsearchRepository<Student,String> {
    /**
     * 根据年龄区间查询
     *
     * @param min 最小值
     * @param max 最大值
     * @return 满足条件的用户列表
     */
    List<Student> findByAgeBetween(Integer min, Integer max);
}

测试

@SpringBootTest
class SpringbootElasticsearchApplicationTests {
    
    Logger logger = LoggerFactory.getLogger(SpringbootElasticsearchApplicationTests.class);
    
    @Autowired
    private EsRepository esRepository;
    
    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    // 创建索引
    @Test
    void contextLoads() throws IOException {
       elasticsearchRestTemplate.createIndex(Student.class);

       elasticsearchRestTemplate.putMapping(Student.class);

    }

    // 新增
    @Test
    void save(){
        Student student = new Student("1","张三",18,75.5,"撒vu");
        Student save = esRepository.save(student);
        logger.info("【save】= {}", save);
    }

    // 批量新增
    @Test
    void saveList(){
        List<Student> list = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            Student student = new Student(i+"","小明"+i,10+i,75.6+i,"shabi"+i);
            list.add(student);
        }
        esRepository.saveAll(list);
    }

    // 查询
    @Test
    void search(){
        Iterable<Student> all = esRepository.findAll();

        for (Student student : all) {
            logger.info("[student] = {}",student);
        }
    }
    
      // 删除
    @Test
    void delete(){
        esRepository.deleteById("1");
    }
    
    
     // 高级查询
    @Test
    void advanceSearch(){
        MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery("id", "0");
        esRepository.search(matchQueryBuilder).forEach(student -> {
            logger.info("[student]={}",student);
        });
    }
    
      // 自定义高级查询
    @Test
    void customAdvanceSelect(){
        // 构造查询条件
        NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
        queryBuilder.withQuery(QueryBuilders.matchAllQuery());
        queryBuilder.withSort(SortBuilders.fieldSort("age").order(SortOrder.DESC));
        Page<Student> search = esRepository.search(queryBuilder.build());
        search.forEach(student -> {
            logger.info("[student]={}",student);
        });
    }
}

以上…

你可能感兴趣的:(Spring,Boot,20天入门)