github地址
队列是一种线性结构
相比数组,队列对应的操作是数组的子集
只能从一端(队尾)添加元素,只能从另一端(队首)取出元素;
队列是一种先进先出的数据结构,First In First Out(FIFO)
操作系统中执行任务的排队等;
ArrayQueue 数组队列
LoopQueue 循环队列
数组队列 VS 循环队列
数组队列:
循环队列:
固定数组循环队列实现方式2:
Queue
数组队列
public class ArrayQueue implements Queue {
private Array array;
public ArrayQueue(int capacity){
array = new Array<>(capacity);
}
public ArrayQueue(){
array = new Array<>();
}
@Override
public int getSize(){
return array.getSize();
}
@Override
public boolean isEmpty(){
return array.isEmpty();
}
public int getCapacity(){
return array.getCapacity();
}
@Override
public void enqueue(E e){
array.addLast(e);
}
@Override
public E dequeue(){
return array.removeFirst();
}
@Override
public E getFront(){
return array.getFirst();
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.append("Queue: ");
res.append("front [");
for(int i = 0 ; i < array.getSize() ; i ++){
res.append(array.get(i));
if(i != array.getSize() - 1)
res.append(", ");
}
res.append("] tail");
return res.toString();
}
public static void main(String[] args){
ArrayQueue queue = new ArrayQueue<>();
for(int i = 0 ; i < 10 ; i ++){
queue.enqueue(i);
System.out.println(queue);
if(i % 3 == 2){
queue.dequeue();
System.out.println(queue);
}
}
}
}
循环队列
public class LoopQueue<E> implements Queue<E> {
private E[] data;
private int front, tail;
private int size; // 有兴趣的同学,在完成这一章后,可以思考一下:
// LoopQueue中不声明size,如何完成所有的逻辑?
// 这个问题可能会比大家想象的要难一点点:)
public LoopQueue(int capacity){
data = (E[])new Object[capacity + 1];
front = 0;
tail = 0;
size = 0;
}
public LoopQueue(){
this(10);
}
public int getCapacity(){
return data.length - 1;
}
@Override
public boolean isEmpty(){
return front == tail;
}
@Override
public int getSize(){
return size;
}
@Override
public void enqueue(E e){
if((tail + 1) % data.length == front)
resize(getCapacity() * 2);
data[tail] = e;
tail = (tail + 1) % data.length;
size ++;
}
@Override
public E dequeue(){
if(isEmpty())
throw new IllegalArgumentException("Cannot dequeue from an empty queue.");
E ret = data[front];
data[front] = null;
front = (front + 1) % data.length;
size --;
if(size == getCapacity() / 4 && getCapacity() / 2 != 0)
resize(getCapacity() / 2);
return ret;
}
@Override
public E getFront(){
if(isEmpty())
throw new IllegalArgumentException("Queue is empty.");
return data[front];
}
private void resize(int newCapacity){
E[] newData = (E[])new Object[newCapacity + 1];
for(int i = 0 ; i < size ; i ++)
newData[i] = data[(i + front) % data.length];
data = newData;
front = 0;
tail = size;
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.append(String.format("Queue: size = %d , capacity = %d\n", size, getCapacity()));
res.append("front [");
for(int i = front ; i != tail ; i = (i + 1) % data.length){
res.append(data[i]);
if((i + 1) % data.length != tail)
res.append(", ");
}
res.append("] tail");
return res.toString();
}
public static void main(String[] args){
LoopQueue<Integer> queue = new LoopQueue<>();
for(int i = 0 ; i < 10 ; i ++){
queue.enqueue(i);
System.out.println(queue);
if(i % 3 == 2){
queue.dequeue();
System.out.println(queue);
}
}
}
}
数组队列VS循环队列
import java.util.Random;
public class Main {
// 测试使用q运行opCount个enqueueu和dequeue操作所需要的时间,单位:秒
private static double testQueue(Queue<Integer> q, int opCount){
long startTime = System.nanoTime();
Random random = new Random();
for(int i = 0 ; i < opCount ; i ++)
q.enqueue(random.nextInt(Integer.MAX_VALUE));
for(int i = 0 ; i < opCount ; i ++)
q.dequeue();
long endTime = System.nanoTime();
return (endTime - startTime) / 1000000000.0;
}
public static void main(String[] args) {
int opCount = 100000;
ArrayQueue<Integer> arrayQueue = new ArrayQueue<>();
double time1 = testQueue(arrayQueue, opCount);
System.out.println("ArrayQueue, time: " + time1 + " s");
LoopQueue<Integer> loopQueue = new LoopQueue<>();
double time2 = testQueue(loopQueue, opCount);
System.out.println("LoopQueue, time: " + time2 + " s");
}
}
Leetcode 102. Binary Tree Level Order Traversal
import java.util.ArrayList;
import java.util.List;
import javafx.util.Pair;
/// Leetcode 102. Binary Tree Level Order Traversal
/// https://leetcode.com/problems/binary-tree-level-order-traversal/description/
/// 二叉树的层序遍历
///
/// 二叉树的层序遍历是一个典型的可以借助队列解决的问题。
/// 该代码主要用于使用Leetcode上的问题测试我们的LoopQueue。
/// 对于二叉树的层序遍历,这个课程后续会讲到。
/// 届时,同学们也可以再回头看这个代码。
/// 不过到时,大家应该已经学会自己编写二叉树的层序遍历啦:)
class Solution {
/// Definition for a binary tree node.
private class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
private interface Queue<E> {
int getSize();
boolean isEmpty();
void enqueue(E e);
E dequeue();
E getFront();
}
private class LoopQueue<E> implements Queue<E> {
private E[] data;
private int front, tail;
private int size; // 有兴趣的同学,在完成这一章后,可以思考一下:
// LoopQueue中不声明size,如何完成所有的逻辑?
// 这个问题可能会比大家想象的要难一点点:)
public LoopQueue(int capacity){
data = (E[])new Object[capacity + 1];
front = 0;
tail = 0;
size = 0;
}
public LoopQueue(){
this(10);
}
public int getCapacity(){
return data.length - 1;
}
@Override
public boolean isEmpty(){
return front == tail;
}
@Override
public int getSize(){
return size;
}
@Override
public void enqueue(E e){
if((tail + 1) % data.length == front)
resize(getCapacity() * 2);
data[tail] = e;
tail = (tail + 1) % data.length;
size ++;
}
@Override
public E dequeue(){
if(isEmpty())
throw new IllegalArgumentException("Cannot dequeue from an empty queue.");
E ret = data[front];
data[front] = null;
front = (front + 1) % data.length;
size --;
if(size == getCapacity() / 4 && getCapacity() / 2 != 0)
resize(getCapacity() / 2);
return ret;
}
@Override
public E getFront(){
if(isEmpty())
throw new IllegalArgumentException("Queue is empty.");
return data[front];
}
private void resize(int newCapacity){
E[] newData = (E[])new Object[newCapacity + 1];
for(int i = 0 ; i < size ; i ++)
newData[i] = data[(i + front) % data.length];
data = newData;
front = 0;
tail = size;
}
@Override
public String toString(){
StringBuilder res = new StringBuilder();
res.append(String.format("Queue: size = %d , capacity = %d\n", size, getCapacity()));
res.append("front [");
for(int i = front ; i != tail ; i = (i + 1) % data.length){
res.append(data[i]);
if((i + 1) % data.length != tail)
res.append(", ");
}
res.append("] tail");
return res.toString();
}
}
public List<List<Integer>> levelOrder(TreeNode root) {
ArrayList<List<Integer>> res = new ArrayList<List<Integer>>();
if(root == null)
return res;
// 我们使用LinkedList来做为我们的先入先出的队列
LoopQueue<Pair<TreeNode, Integer>> queue = new LoopQueue<Pair<TreeNode, Integer>>();
queue.enqueue(new Pair<TreeNode, Integer>(root, 0));
while(!queue.isEmpty()){
Pair<TreeNode, Integer> front = queue.dequeue();
TreeNode node = front.getKey();
int level = front.getValue();
if(level == res.size())
res.add(new ArrayList<Integer>());
assert level < res.size();
res.get(level).add(node.val);
if(node.left != null)
queue.enqueue(new Pair<TreeNode, Integer>(node.left, level + 1));
if(node.right != null)
queue.enqueue(new Pair<TreeNode, Integer>(node.right, level + 1));
}
return res;
}
}