hadoop学习笔记(三)——MapTask和ReduceTask

MapTaskReduceTask

 

我们知道每一个Task都对应着一个jvm的执行,但是每一个Task都是在Child进程中执行的!我们来看一下Child类的主方法(源代码)

public static void main(String[] args) throws Throwable {

    LOG.debug("Child starting");

 

final JobConf defaultConf = new JobConf();

获取TaskIP,和端口信息

    String host = args[0];

    int port = Integer.parseInt(args[1]);

final InetSocketAddress address = new InetSocketAddress(host, port);

TaskID

final TaskAttemptID firstTaskid = TaskAttemptID.forName(args[2]);

 

    final String logLocation = args[3];

    final int SLEEP_LONGER_COUNT = 5;

int jvmIdInt = Integer.parseInt(args[4]);

每个任务所分配的JVMID

JVMId jvmId = new JVMId(firstTaskid.getJobID(),firstTaskid.isMap(),jvmIdInt);

判断是MapTask还是ReduceTask

    String prefix = firstTaskid.isMap() ? "MapTask" : "ReduceTask";

 

    工作路径

    cwd = System.getenv().get(TaskRunner.HADOOP_WORK_DIR);

    if (cwd == null) {

      throw new IOException("Environment variable " + 

                             TaskRunner.HADOOP_WORK_DIR + " is not set");

    }

 

   获取环境变量中的值--hadoop中文件系统所在的目录

     String jobTokenFile = 

      System.getenv().get  (UserGroupInformation.HADOOP_TOKEN_FILE_LOCATION);

   签订证书

    Credentials credentials = 

      TokenCache.loadTokens(jobTokenFile, defaultConf);

    LOG.debug("loading token. # keys =" +credentials.numberOfSecretKeys() + 

        "; from file=" + jobTokenFile);

    

Token jt = TokenCache.getJobToken(credentials);

设置服务器的地址

    jt.setService(new Text(address.getAddress().getHostAddress() + ":"

        + address.getPort()));

     当前用户组信息

    UserGroupInformation current = UserGroupInformation.getCurrentUser();

current.addToken(jt);

 

    远程的用户

    UserGroupInformation taskOwner 

     = UserGroupInformation.createRemoteUser(firstTaskid.getJobID().toString());

    taskOwner.addToken(jt);

    

    设置证书

    defaultConf.setCredentials(credentials);

    

final TaskUmbilicalProtocol umbilical = 

 执行任务

      taskOwner.doAs(new PrivilegedExceptionAction() {

       

        public TaskUmbilicalProtocol run() throws Exception {

          return 

     返回RPC代理出的结果

(TaskUmbilicalProtocol)RPC.getProxy(TaskUmbilicalProtocol.class,

              TaskUmbilicalProtocol.versionID,

              address,

              defaultConf);

        }

    });

    

    int numTasksToExecute = -1; //-1 signifies "no limit"

int numTasksExecuted = 0;

日志记录的代码

     ......

    t.setName("Thread for syncLogs");

    t.setDaemon(true);

    t.start();

    

    String pid = "";

    if (!Shell.WINDOWS) {

      pid = System.getenv().get("JVM_PID");

    }

    JvmContext context = new JvmContext(jvmId, pid);

    int idleLoopCount = 0;

    Task task = null;

    

    UserGroupInformation childUGI = null;

 

    try {

      while (true) {

        taskid = null;

        currentJobSegmented = true;

 

        JvmTask myTask = umbilical.getTask(context);

        if (myTask.shouldDie()) {

          break;

        } else {

          if (myTask.getTask() == null) {

            taskid = null;

            currentJobSegmented = true;

 

            if (++idleLoopCount >= SLEEP_LONGER_COUNT) {

              //we sleep for a bigger interval when we don't receive

              //tasks for a while

              Thread.sleep(1500);

            } else {

              Thread.sleep(500);

            }

            continue;

          }

        }

        idleLoopCount = 0;

        task = myTask.getTask();

        taskid = task.getTaskID();

 

        // Create the JobConf and determine if this job gets segmented task logs

        final JobConf job = new JobConf(task.getJobFile());

        currentJobSegmented = logIsSegmented(job);

 

        isCleanup = task.isTaskCleanupTask();

        重设静态数据

        FileSystem.clearStatistics();

        

        设置job  证书                      job.setCredentials(defaultConf.getCredentials());

        

设置当当前的任务执行完毕的时候即JVM执行完毕之后就关闭本地缓存系统

        job.setBoolean("fs.file.impl.disable.cache"false);

 

        // set the jobTokenFile into task

        task.setJobTokenSecret(JobTokenSecretManager.

            createSecretKey(jt.getPassword()));

 

      

         设置本地的map路径,之后当前child只能从临时的目录读取数据

        TaskRunner.setupChildMapredLocalDirs(task, job);

        

        // setup the child's attempt directories

        设置临时的路径

        localizeTask(task, job, logLocation);

 

       

为分布式缓存系统设置工作路径

        TaskRunner.setupWorkDir(job, new File(cwd));

       

        设置日志文件的位置

        TaskLog.syncLogs

          (logLocation, taskidisCleanuplogIsSegmented(job));

        

        numTasksToExecute = job.getNumTasksToExecutePerJvm();

        assert(numTasksToExecute != 0);

 

        task.setConf(job);

 

        // Initiate Java VM metrics

初始化JVMMetrics(监测系统运行的对象)

        initMetrics(prefix, jvmId.toString(), job.getSessionId());

 

        LOG.debug("Creating remote user to execute task: " + job.get("user.name"));

        childUGI = UserGroupInformation.createRemoteUser(job.get("user.name"));

     

 设置新的标志以便任务的执行

        for(Token token : UserGroupInformation.getCurrentUser().getTokens()) {

          childUGI.addToken(token);

        }

        

        // Create a final reference to the task for the doAs block

创建task执行的块

        final Task taskFinal = task;

        childUGI.doAs(new PrivilegedExceptionAction() {

          @Override

          public Object run() throws Exception {

            try {

 

        设置工作的路径              

       FileSystem.get(job).setWorkingDirectory(job.getWorkingDirectory());

执行次方法才开始执行任务

              taskFinal.run(job, umbilical);           

            } finally {

              TaskLog.syncLogs

                (logLocation, taskidisCleanuplogIsSegmented(job));

              TaskLogsTruncater trunc = new TaskLogsTruncater(defaultConf);

              trunc.truncateLogs(new JVMInfo(

                  TaskLog.getAttemptDir(taskFinal.getTaskID(),

                    taskFinal.isTaskCleanupTask()), Arrays.asList(taskFinal)));

            }

 

            return null;

          }

        });

        if (numTasksToExecute > 0 && ++numTasksExecuted == numTasksToExecute) {

表示任务执行完毕

          break;

        }

      }

    } catch (FSError e) {

      LOG.fatal("FSError from child", e);

      umbilical.fsError(taskid, e.getMessage());

    } catch (Exception exception) {

      LOG.warn("Error running child", exception);

      try {

        if (task != null) {

          // do cleanup for the task

          if(childUGI == null) {

            task.taskCleanup(umbilical);

          } else {

            final Task taskFinal = task;

            childUGI.doAs(new PrivilegedExceptionAction() {

              @Override

              public Object run() throws Exception {

                taskFinal.taskCleanup(umbilical);

                return null;

              }

            });

          }

        }

      } catch (Exception e) {

        LOG.info("Error cleaning up", e);

      }

      // Report back any failures, for diagnostic purposes

      ByteArrayOutputStream baos = new ByteArrayOutputStream();

      exception.printStackTrace(new PrintStream(baos));

      if (taskid != null) {

        umbilical.reportDiagnosticInfo(taskid, baos.toString());

      }

    } catch (Throwable throwable) {

      LOG.fatal("Error running child : "

                + StringUtils.stringifyException(throwable));

      if (taskid != null) {

        Throwable tCause = throwable.getCause();

        String cause = tCause == null 

                       ? throwable.getMessage() 

                       : StringUtils.stringifyException(tCause);

        umbilical.fatalError(taskid, cause);

      }

finally {

finally里面停止RPC传输和Metrics监测

      RPC.stopProxy(umbilical);

      shutdownMetrics();

      停止日志对象

      LogManager.shutdown();

    }

  }

 

通过对Child类主方法的分析我们发现,每个Child进程通过RPC代理和tasktracker进行通信,系统为我们设计好了一些RPC工具类,方便调用。还有就是这个Metrics类他能任务的运行状况。当前用户和远程的用户签订了一种证书,相当于一种协议,这个证书对于tasktracker的调度有很大的作用。在执行任务之前做了一系列的初始化动作包括设置各种路径以及初始化Metrics对象,任务执行完毕之后要汇报结果以及做一些关闭动作。

 

每一个Task都对应着一个自定义的Run方法;

来看看Maprun方法:

 public void run(final JobConf job, final TaskUmbilicalProtocol umbilical)

    throws IOException, ClassNotFoundException, InterruptedException {

    this.umbilical = umbilical;

 

定期向JobTracker报告的类    

TaskReporter reporter = new TaskReporter(getProgress(), umbilical);

开始通信线程

    reporter.startCommunicationThread();

boolean useNewApi = job.getUseNewMapper();

初始化任务

    initialize(job, getJobID(), reporter, useNewApi);

 

    查看是不是清理任务

    if (jobCleanup) {

      runJobCleanupTask(umbilical, reporter);

      return;

}

建立任务

    if (jobSetup) {

      runJobSetupTask(umbilical, reporter);

      return;

    }

    if (taskCleanup) {

      runTaskCleanupTask(umbilical, reporter);

      return;

}

Map任务的run方法中我们首先要建立一个TaskReporter 对象用于TaskTracker报告结果,然后我们要判断该执行何种任务,是建立任务还是清除的任务,然后在执行。

 

    如果是新的配置下的api就执行新的任务否则执行以前的任务

    if (useNewApi) {

      runNewMapper(job, splitMetaInfo, umbilical, reporter);

    } else {

      runOldMapper(job, splitMetaInfo, umbilical, reporter);

    }

    done(umbilical, reporter);

  }

 

其实我们可以想像在ReduceTaskrun方法中也应该有部分类似的方法

ReduceTask中的run方法:

public void run(JobConf job, final TaskUmbilicalProtocol umbilical)

    throws IOException, InterruptedException, ClassNotFoundException {

    this.umbilical = umbilical;

    job.setBoolean("mapred.skip.on", isSkipping());

 

    Reduce任务分为三个部分copy,sort,reduce

    if (isMapOrReduce()) {

      copyPhase = getProgress().addPhase("copy");

      sortPhase  = getProgress().addPhase("sort");

      reducePhase = getProgress().addPhase("reduce");

    }

    开启一个想TaskTracker汇报的线程;

TaskReporter reporter = new TaskReporter(getProgress(), umbilical);

 

    reporter.startCommunicationThread();

    boolean useNewApi = job.getUseNewReducer();

    initialize(job, getJobID(), reporter, useNewApi);

 

    // check if it is a cleanupJobTask

    if (jobCleanup) {

      runJobCleanupTask(umbilical, reporter);

        清理Job,包括步骤状态设置,更新状态到TaskTracker

      return;

    }

    if (jobSetup) {

      runJobSetupTask(umbilical, reporter);

              清理TaskTracker和上述CleanupTask方法类似。 

      return;

    }

    if (taskCleanup) {

      runTaskCleanupTask(umbilical, reporter);

      return;

    }

    

    // Initialize the codec

    codec = initCodec();

 

 

    boolean isLocal = "local".equals(job.get("mapred.job.tracker""local"));

    if (!isLocal) {

      reduceCopier = new ReduceCopier(umbilical, job, reporter);

      if (!reduceCopier.fetchOutputs()) {

        if(reduceCopier.mergeThrowable instanceof FSError) {

          throw (FSError)reduceCopier.mergeThrowable;

        }

        throw new IOException("Task: " + getTaskID() + 

            " - The reduce copier failed"reduceCopier.mergeThrowable);

      }

}

 

copyPhase.complete();                         

Copy结束后进行sort

    setPhase(TaskStatus.Phase.SORT);

    statusUpdate(umbilical);

 

final FileSystem rfs = FileSystem.getLocal(job).getRaw();

Sort之后进行Merge

    RawKeyValueIterator rIter = isLocal

      ? Merger.merge(job, rfs, job.getMapOutputKeyClass(),

          job.getMapOutputValueClass(), codec, getMapFiles(rfs, true),

          !conf.getKeepFailedTaskFiles(), 

job.getInt("io.sort.factor", 100),(sort的属性设置,缓冲区的大小默认100)

          new Path(getTaskID().toString()), job.getOutputKeyComparator(),

          reporter, spilledRecordsCounternull)

      : reduceCopier.createKVIterator(job, rfs, reporter);

        

清除磁盘的临时文件;

    mapOutputFilesOnDisk.clear();

    Sort结束

sortPhase.complete();   

   

开始执行Reduce程序                   

    setPhase(TaskStatus.Phase.REDUCE); 

statusUpdate(umbilical);

 

    Class keyClass = job.getMapOutputKeyClass();

    Class valueClass = job.getMapOutputValueClass();

    RawComparator comparator = job.getOutputValueGroupingComparator();

 

判断是否执行新的api

    if (useNewApi) {

      runNewReducer(job, umbilical, reporter, rIter, comparator, 

                    keyClass, valueClass);

    } else {

      runOldReducer(job, umbilical, reporter, rIter, comparator, 

                    keyClass, valueClass);

    }

    done(umbilical, reporter);

  }

 

通过对ReduceTask的分析我们可以很清晰的发现ReduceTask执行顺序,copysortReduce,其中sort之后还会做Merge处理,同时copy完了之后会对磁盘上的临时文件做清除处理。然后的执行策略和MapTask基本一致。


hadoop学习笔记(三)——MapTask和ReduceTask_第1张图片

以上分析只是自己的一点简单的理解,具体的很多实现我还没有去了解比如Metrics的具体实现以及那个证书具体的东东等等。

 

 

你可能感兴趣的:(hadoop,hadoop,MapTask,ReduceTask)