深度学习的图片统一设置大小

直接对train里面的目录操作,同级建立一个train1接受处理好的图片

import os
from PIL import Image

def clean(w=64,h=64):

    path = "D:/rubbish_perfect/test"
    save_path = "D:/rubbish_perfect/test1"
    if not os.path.exists(save_path):
        os.mkdir(save_path)
    file_names = os.listdir(path) # 获取路径下所有文件的名字
    for file_name in file_names:

        lower_directory=path+"/"+str(file_name)
        save_ds=save_path+"/"+str(file_name)
        if not os.path.exists(save_ds):
            os.mkdir(save_ds)
        lower_directory_names=os.listdir(lower_directory)

        for lower_directory_name in lower_directory_names:
            photo_path=lower_directory+"/"+str(lower_directory_name)
           # print(photo_path)
            save_name = save_path + "/" +str(file_name) +"/"+str(lower_directory_name)
            #print(save_name)


            try:
                pic = Image.open(photo_path)
                pic = pic.resize((w, h))
                pic.save(save_name)
                print("成功")
            except:
                print("fail")
if __name__ == '__main__':
    clean()

直接把图片全部处理完成,目录结构也是相同的

你可能感兴趣的:(python)