搭建深度学习平台+CUDA10.0+cuDNN7.3.1+Tensorflow-GPU1.13

安装Ubuntu16.04系统(自己网上查找)

 

升级系统软件

sudo apt-get update
sudo apt-get upgrade
sudo apt-add-repository ppa:fixnix/netspeed
sudo apt-get update
sudo apt-get install indicator-netspeed-unity
indicator-netspeed-unity &

安装图像、视频和人机界面等工具包

sudo apt-get install build-essential cmake git unzip pkg-config
sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
sudo apt-get install libxvidcore-dev libx264-dev
sudo apt-get install libgtk-3-dev
sudo apt-get install libhdf5-serial-dev graphviz
sudo apt-get install libopenblas-dev libatlas-base-dev gfortran
sudo apt-get install python-tk python3-tk python-imaging-tk
sudo apt-get install vim
sudo apt-get install build-essential 
sudo apt-get install cmake git unzip zip 
sudo apt-get install python2.7-dev python3-dev pylint
sudo apt-get install python-dev python3-dev python-pip python3-pip

开始创建virtualenv独立环境,用来处理不同项目需要不同版本软件的问题

wget https://bootstrap.pypa.io/get-pip.py
sudo python get-pip.py
sudo python3 get-pip.py
sudo pip install virtualenv virtualenvwrapper
sudo rm -rf ~/.cache/pip get-pip.py

安装virtualenv和virtualenvwrapper之后,更新~/.bashrc文件,在文档最后加上以下几行

# virtualenv and virtualenvwrapper
export WORKON_HOME=$HOME/.virtualenvs
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
source /usr/local/bin/virtualenvwrapper.sh

建立‘cv_p3’虚拟工作环境,并在‘cv_p3’中安装组件

source ~/.bashrc
mkvirtualenv cv_p3 -p python3
workon cv_p3
pip install numpy

编译和安装OpenCV(下载OpenCV4.0安装包两个,注意要在'cv_p3'环境中安装)

cd ~
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.0.0.zip
wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.0.0.zip
unzip opencv.zip
unzip opencv_contrib.zip
cd ~/opencv-4.0.0/
mkdir build
cd build

输入以下指令:

cmake -D CMAKE_BUILD_TYPE=RELEASE \
	-D CMAKE_INSTALL_PREFIX=/usr/local \
	-D INSTALL_PYTHON_EXAMPLES=ON \
	-D INSTALL_C_EXAMPLES=OFF \
	-D OPENCV_ENABLE_NONFREE=ON \
	-D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.0.0/modules \
	-D PYTHON_EXECUTABLE=~/.virtualenvs/cv_p3/bin/python \
	-D BUILD_EXAMPLES=ON ..

编译OpenCV

make -j4
sudo make install
sudo ldconfig
cd ~

链接OpenCV和虚拟环境‘cv_p3’

cd /usr/local/python/cv2/python-3.5
sudo mv cv2.cpython-35m-x86_64-linux-gnu.so cv2.so
cd ~/.virtualenvs/cv_p3/lib/python3.5/site-packages/
ln -s /usr/local/python/cv2/python-3.5/cv2.so cv2.so

安装TensorFlow

首先测试当地是否有英伟达GPU

lspci | grep -i nvidia

测试linux版本( x86_64说明该系统是 64-bit系统,被cuda 9.1支持)

uname -m && cat /etc/*release

安装linux 核的抬头

uname -r
sudo apt-get install linux-headers-$(uname -r)

下载安装英伟达CUDA 10.0

sudo apt-get purge nvidia*
sudo apt-get autoremove
sudo apt-get autoclean
sudo rm -rf /usr/local/cuda*
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda.list
sudo apt-get update 
sudo apt-get -o Dpkg::Options::="--force-overwrite" install cuda-10-0 cuda-drivers

Download '7fa2af80.pub' from 'http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/'

sudo apt-key add Downloads/7fa2af80.pub
sudo apt-get update
sudo apt-get -o Dpkg::Options::="--force-overwrite" install cuda-10-0 cuda-drivers

Reboot

echo 'export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc
source ~/.bashrc
sudo ldconfig
nvidia-smi

 Check CUDA

cuda-install-samples-10.0.sh ~
cd ~/NVIDIA_CUDA-10.0_Samples/5_Simulations/nbody
make
./nbody

登录注册网站https://developer.nvidia.com/cudnn下载以下文件

cuDNN v7.3.1 Library for Linux [ cuda 10.0]

tar -xf cudnn-10.0-linux-x64-v7.3.1.20.tgz
sudo cp -R cuda/include/* /usr/local/cuda-10.0/include
sudo cp -R cuda/lib64/* /usr/local/cuda-10.0/lib64

安装NCCL 2.3.5:

Download NCCL v2.3.5, for CUDA 10.0 -> NCCL 2.3.5 O/S agnostic and CUDA 10.0
tar -xf nccl_2.3.5-2+cuda10.0_x86_64.txz
cd nccl_2.3.5-2+cuda10.0_x86_64
sudo cp -R * /usr/local/cuda-10.0/targets/x86_64-linux/
sudo ldconfig
workon cv_p3
sudo pip install -U pip six numpy wheel mock
sudo pip install -U keras_applications
sudo pip install -U keras_preprocessing

安装Bazel

cd ~/
wget https://github.com/bazelbuild/bazel/releases/download/0.19.2/bazel-0.19.2-installer-linux-x86_64.sh
chmod +x bazel-0.19.2-installer-linux-x86_64.sh
./bazel-0.19.2-installer-linux-x86_64.sh --user
echo 'export PATH="$PATH:$HOME/bin"' >> ~/.bashrc
source ~/.bashrc
sudo ldconfig

安装TensorFlow

cd ~/
workon cv_p3
git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow
git checkout r1.13
./configure

完成以下环境设置

Please specify the location of python. [Default is /usr/bin/python]: /usr/local/lib/python3.5/dist-packages
Do you wish to build TensorFlow with Apache Ignite support? [Y/n]: Y
Do you wish to build TensorFlow with XLA JIT support? [Y/n]: Y
Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: N
Do you wish to build TensorFlow with ROCm support? [y/N]: N
Do you wish to build TensorFlow with CUDA support? [y/N]: Y
Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 9.0]: 10.0
Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0
Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1
Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: /usr/local/cuda-10.0
Do you wish to build TensorFlow with TensorRT support? [y/N]: N
Please specify the NCCL version you want to use. If NCCL 2.2 is not installed, then you can use version 1.3 that can be fetched automatically but it may have worse performance with multiple GPUs. [Default is 2.2]: 2.3.5
Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 7.5,7.5]:
Do you want to use clang as CUDA compiler? [y/N]: N
Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: /usr/bin/gcc
Do you wish to build TensorFlow with MPI support? [y/N]: N
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]: -march=native
Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]:N

用Bazel来安装TensorFlow

bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package tensorflow_pkg
cd tensorflow_pkg
pip install tensorflow*.whl
pip3 install tensorflow*.whl

测试TensporFlow

python
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

 

你可能感兴趣的:(搭建深度学习平台+CUDA10.0+cuDNN7.3.1+Tensorflow-GPU1.13)