最近同事对 .net core memcached 缓存客户端 EnyimMemcachedCore 进行了高并发下的压力测试,发现在 linux 上高并发下使用 async 异步方法读取缓存数据会出现大量失败的情况,比如在一次测试中,100万次读取缓存,只有12次成功,999988次失败,好恐怖。如果改为同步方法,没有一次失败,100%成功。奇怪的是,同样的压力测试程序在 Windows 上异步读取却没问题,100%成功。
排查后发现是2个地方使用的锁引起的,一个是 ManualResetEventSlim ,一个是 Semaphore ,这2个锁是在同步方法中使用的,但 aync 异步方法中调用了这2个同步方法,我们来分别看一下。
使用 ManualResetEventSlim 是在创建 Socket 连接时用于控制连接超时
var args = new SocketAsyncEventArgs(); using (var mres = new ManualResetEventSlim()) { args.Completed += (s, e) => mres.Set(); if (socket.ConnectAsync(args)) { if (!mres.Wait(timeout)) { throw new TimeoutException("Could not connect to " + endpoint); } } }
使用 Semaphore 是在从 EnyimMemcachedCore 自己实现的 Socket 连接池获取 Socket 连接时
if (!this.semaphore.WaitOne(this.queueTimeout)) { message = "Pool is full, timeouting. " + _endPoint; if (_isDebugEnabled) _logger.LogDebug(message); result.Fail(message, new TimeoutException()); // everyone is so busy return result; }
为了弃用这个2个锁造成的异步并发问题,采取了下面2个改进措施:
1)对于 ManualResetEventSlim ,参考 corefx 中 SqlClient 的 SNITcpHandle 的实现,改用 CancellationTokenSource 控制连接超时
var cts = new CancellationTokenSource(); cts.CancelAfter(timeout); void Cancel() { if (!socket.Connected) { socket.Dispose(); } } cts.Token.Register(Cancel); socket.Connect(endpoint); if (socket.Connected) { connected = true; } else { socket.Dispose(); }
2)对于 Semaphore ,根据同事提交的 PR ,将 Semaphore 换成 SemaphoreSlim ,用 SemaphoreSlim.WaitAsync 方法等待信号量锁
if (!await this.semaphore.WaitAsync(this.queueTimeout)) { message = "Pool is full, timeouting. " + _endPoint; if (_isDebugEnabled) _logger.LogDebug(message); result.Fail(message, new TimeoutException()); // everyone is so busy return result; }
改进后,压力测试结果立马与同步方法一样,100% 成功!
为什么会这样?
我们到 github 的 coreclr 仓库(针对 .net core 2.2)中看看 ManualResetEventSlim 与 Semaphore 的实现源码,看能否找到一些线索。
(一)
先看看 ManualResetEventSlim.Wait 方法的实现代码(523开始):
1)先 SpinWait 等待
var spinner = new SpinWait(); while (spinner.Count < spinCount) { spinner.SpinOnce(sleep1Threshold: -1); if (IsSet) { return true; } }
SpinWait 等待时间比较短,不会造成长时间阻塞线程。
在高并发下大量线程在争抢锁,所以大量线程在这个阶段等不到锁。
2)然后 Monitor.Wait 等待
try { // ** the actual wait ** if (!Monitor.Wait(m_lock, realMillisecondsTimeout)) return false; //return immediately if the timeout has expired. } finally { // Clean up: we're done waiting. Waiters = Waiters - 1; }
Monitor.Wait 对应的实现代码
[MethodImplAttribute(MethodImplOptions.InternalCall)] private static extern bool ObjWait(bool exitContext, int millisecondsTimeout, object obj); public static bool Wait(object obj, int millisecondsTimeout, bool exitContext) { if (obj == null) throw (new ArgumentNullException(nameof(obj))); return ObjWait(exitContext, millisecondsTimeout, obj); }
最终调用的是一个本地库的 ObjWait 方法。
查阅一下 Monitor.Wait 方法的帮助文档:
Releases the lock on an object and blocks the current thread until it reacquires the lock. If the specified time-out interval elapses, the thread enters the ready queue.
Monitor.Wait 的确会阻塞当前线程,这在异步高并发下会带来问题,详见一码阻塞,万码等待:ASP.NET Core 同步方法调用异步方法“死锁”的真相。
(二)
再看看 Semaphore 的实现代码,它继承自 WaitHandle , Semaphore.Wait 实际调用的是 WaitHandle.Wait ,后者调用的是 WaitOneNative ,这是一个本地库的方法
[MethodImplAttribute(MethodImplOptions.InternalCall)] private static extern int WaitOneNative(SafeHandle waitableSafeHandle, uint millisecondsTimeout, bool hasThreadAffinity, bool exitContext);
.net core 3.0 中有些变化,这里调用的是 WaitOneCore 方法
[MethodImpl(MethodImplOptions.InternalCall)] private static extern int WaitOneCore(IntPtr waitHandle, int millisecondsTimeout);
查阅一下 WaitHandle.Wait 方法的帮助文档:
Blocks the current thread until the current WaitHandle receives a signal, using a 32-bit signed integer to specify the time interval in milliseconds.
WaitHandle.Wait 也会阻塞当前线程。
2个地方在等待锁时都会阻塞线程,难怪高并发下会出问题。
(三)
接着阅读 SemaphoreSlim 的源码学习它是如何在 WaitAsync 中实现异步等待锁的?
public Task<bool> WaitAsync(int millisecondsTimeout, CancellationToken cancellationToken) { //... lock (m_lockObj!) { // If there are counts available, allow this waiter to succeed. if (m_currentCount > 0) { --m_currentCount; if (m_waitHandle != null && m_currentCount == 0) m_waitHandle.Reset(); return s_trueTask; } else if (millisecondsTimeout == 0) { // No counts, if timeout is zero fail fast return s_falseTask; } // If there aren't, create and return a task to the caller. // The task will be completed either when they've successfully acquired // the semaphore or when the timeout expired or cancellation was requested. else { Debug.Assert(m_currentCount == 0, "m_currentCount should never be negative"); var asyncWaiter = CreateAndAddAsyncWaiter(); return (millisecondsTimeout == Timeout.Infinite && !cancellationToken.CanBeCanceled) ? asyncWaiter : WaitUntilCountOrTimeoutAsync(asyncWaiter, millisecondsTimeout, cancellationToken); } } }
重点看 else 部分的代码,SemaphoreSlim.WaitAsync 造了一个专门用于等待锁的 Task —— TaskNode ,CreateAndAddAsyncWaiter 就用于创建 TaskNode 的实例
private TaskNode CreateAndAddAsyncWaiter() { // Create the task var task = new TaskNode(); // Add it to the linked list if (m_asyncHead == null) { m_asyncHead = task; m_asyncTail = task; } else { m_asyncTail.Next = task; task.Prev = m_asyncTail; m_asyncTail = task; } // Hand it back return task; }
从上面的代码看到 TaskNode 用到了链表,神奇的等锁专用 Task —— TaskNode 是如何实现的呢?
private sealed class TaskNode : Task<bool> { internal TaskNode? Prev, Next; internal TaskNode() : base((object?)null, TaskCreationOptions.RunContinuationsAsynchronously) { } }
好简单!
那 SemaphoreSlim.WaitAsync 如何用 TaskNode 实现指定了超时时间的锁等待?
看 WaitUntilCountOrTimeoutAsync 方法的实现源码:
private async Task<bool> WaitUntilCountOrTimeoutAsync(TaskNode asyncWaiter, int millisecondsTimeout, CancellationToken cancellationToken) { // Wait until either the task is completed, timeout occurs, or cancellation is requested. // We need to ensure that the Task.Delay task is appropriately cleaned up if the await // completes due to the asyncWaiter completing, so we use our own token that we can explicitly // cancel, and we chain the caller's supplied token into it. using (var cts = cancellationToken.CanBeCanceled ? CancellationTokenSource.CreateLinkedTokenSource(cancellationToken, default(CancellationToken)) : new CancellationTokenSource()) { var waitCompleted = Task.WhenAny(asyncWaiter, Task.Delay(millisecondsTimeout, cts.Token)); if (asyncWaiter == await waitCompleted.ConfigureAwait(false)) { cts.Cancel(); // ensure that the Task.Delay task is cleaned up return true; // successfully acquired } } // If we get here, the wait has timed out or been canceled. // If the await completed synchronously, we still hold the lock. If it didn't, // we no longer hold the lock. As such, acquire it. lock (m_lockObj) { // Remove the task from the list. If we're successful in doing so, // we know that no one else has tried to complete this waiter yet, // so we can safely cancel or timeout. if (RemoveAsyncWaiter(asyncWaiter)) { cancellationToken.ThrowIfCancellationRequested(); // cancellation occurred return false; // timeout occurred } } // The waiter had already been removed, which means it's already completed or is about to // complete, so let it, and don't return until it does. return await asyncWaiter.ConfigureAwait(false); }
用 Task.WhenAny 等待 TaskNode 与 Task.Delay ,等其中任一者先完成,简单到可怕。
又一次通过 .net core 源码欣赏了高手是怎么玩转 Task 的。
【2019-5-6更新】
今天将 Task.WhenAny + Task.Delay 的招式用到了异步连接 Socket 的超时控制中
var connTask = _socket.ConnectAsync(_endpoint); if (await Task.WhenAny(connTask, Task.Delay(_connectionTimeout)) == connTask) { await connTask; }