Kubernetes中调度GPU资源

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

Kubernetes中调度GPU资源

Kubernetes 包含一个体验性的功能,支持 AMD和NVIDIA GPUs 跨节点调度。对 NVIDIA GPUs 支持从 v1.6开始,然后经过几次不兼容的叠代修改,对AMD GPUs 的支持从 v1.9 开始,通过 device plugin提供。

  • 在Ubuntu上安装GPU驱动,参考:
    • 推荐:Ubuntu18.04上安装RTX 2080Ti显卡驱动
    • Ubuntu 16.04安装NVIDIA的显卡驱动396和CUDA9.1
    • Ubuntu 安装NVidia驱动
    • Ubuntu换新显卡无法启动
    • Ubuntu快速玩转机器学习
  • 安装NVidia-docker引擎,参考:
    • Kubernetes集群升级NVidia GPU驱动版本
    • https://github.com/NVIDIA/nvidia-docker
    • Kubernetes安装GPU支持插件

本文描述了用户在不同版本的kubernetes使用GPUs的方法及其当前版本的限制。

  • v1.8 onwards
  • Clusters containing different types of NVIDIA GPUs

v1.8 以后

从1.8开始, 建议调用 GPUs 的方法是通过使用 device plugins。

为了启用 GPU支持,在1.10之前, 该DevicePlugins feature gate 需要通过系统设置来激活: --feature-gates="DevicePlugins=true". 但在 1.10及以后,不再需要这一设置。

您还需要安装 GPU drivers到各个节点,驱动和device plugin都由相应的GPU生产厂家提供 (AMD, NVIDIA)。

当上述条件满足时, Kubernetes 服务将提供名称为 nvidia.com/gpuamd.com/gpu 作为可调度的资源。

You can consume these GPUs from your containers by requesting .com/gpu just like you request cpu or memory. However, there are some limitations in how you specify the resource requirements when using GPUs:

  • GPUs are only supposed to be specified in the limits section, which means:
    • You can specify GPU limits without specifying requests because Kubernetes will use the limit as the request value by default.
    • You can specify GPU in both limits and requests but these two values must be equal.
    • You cannot specify GPU requests without specifying limits.
  • Containers (and pods) do not share GPUs. There’s no overcommitting of GPUs.
  • Each container can request one or more GPUs. It is not possible to request a fraction of a GPU.

Here’s an example:

apiVersion: v1
kind: Pod
metadata:
  name: cuda-vector-add
spec:
  restartPolicy: OnFailure
  containers:
    - name: cuda-vector-add
      # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
      image: "k8s.gcr.io/cuda-vector-add:v0.1"
      resources:
        limits:
          nvidia.com/gpu: 1 # requesting 1 GPU

Deploying AMD GPU device plugin

The official AMD GPU device plugin has the following requirements:

  • Kubernetes nodes have to be pre-installed with AMD GPU Linux driver.

To deploy the AMD device plugin once your cluster is running and the above requirements are satisfied:

# For Kubernetes v1.9
kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/r1.9/k8s-ds-amdgpu-dp.yaml

# For Kubernetes v1.10
kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/r1.10/k8s-ds-amdgpu-dp.yaml

Report issues with this device plugin to RadeonOpenCompute/k8s-device-plugin.

Deploying NVIDIA GPU device plugin

There are currently two device plugin implementations for NVIDIA GPUs:

Official NVIDIA GPU device plugin

The official NVIDIA GPU device plugin has the following requirements:

  • Kubernetes nodes have to be pre-installed with NVIDIA drivers.
  • Kubernetes nodes have to be pre-installed with nvidia-docker 2.0
  • nvidia-container-runtime must be configured as the default runtime for docker instead of runc.
  • NVIDIA drivers ~= 361.93

To deploy the NVIDIA device plugin once your cluster is running and the above requirements are satisfied:

# For Kubernetes v1.8
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.8/nvidia-device-plugin.yml

# For Kubernetes v1.9
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.9/nvidia-device-plugin.yml

Report issues with this device plugin to NVIDIA/k8s-device-plugin.

NVIDIA GPU device plugin used by GCE

The NVIDIA GPU device plugin used by GCE doesn’t require using nvidia-docker and should work with any container runtime that is compatible with the Kubernetes Container Runtime Interface (CRI). It’s tested on Container-Optimized OS and has experimental code for Ubuntu from 1.9 onwards.

On your 1.12 cluster, you can use the following commands to install the NVIDIA drivers and device plugin:

# Install NVIDIA drivers on Container-Optimized OS:
kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/stable/daemonset.yaml

# Install NVIDIA drivers on Ubuntu (experimental):
kubectl create -f https://raw.githubusercontent.com/GoogleCloudPlatform/container-engine-accelerators/stable/nvidia-driver-installer/ubuntu/daemonset.yaml

# Install the device plugin:
kubectl create -f https://raw.githubusercontent.com/kubernetes/kubernetes/release-1.12/cluster/addons/device-plugins/nvidia-gpu/daemonset.yaml

Report issues with this device plugin and installation method to GoogleCloudPlatform/container-engine-accelerators.

Instructions for using NVIDIA GPUs on GKE are here

Clusters containing different types of NVIDIA GPUs

If different nodes in your cluster have different types of NVIDIA GPUs, then you can use Node Labels and Node Selectors to schedule pods to appropriate nodes.

For example:

# Label your nodes with the accelerator type they have.
kubectl label nodes  accelerator=nvidia-tesla-k80
kubectl label nodes  accelerator=nvidia-tesla-p100

Specify the GPU type in the pod spec:

apiVersion: v1
kind: Pod
metadata:
  name: cuda-vector-add
spec:
  restartPolicy: OnFailure
  containers:
    - name: cuda-vector-add
      # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
      image: "k8s.gcr.io/cuda-vector-add:v0.1"
      resources:
        limits:
          nvidia.com/gpu: 1
  nodeSelector:
    accelerator: nvidia-tesla-p100 # or nvidia-tesla-k80 etc.

This will ensure that the pod will be scheduled to a node that has the GPU type you specified.

转载于:https://my.oschina.net/u/2306127/blog/2996964

你可能感兴趣的:(Kubernetes中调度GPU资源)