ThreadLocal讲解

文章目录

  • ThreadLocal
    • ThreadLocal优势
    • java.lang.ThreadLocal的具体实现
    • 小结
  • ThreadLocal内存溢出
      • 总结

ThreadLocal

参考链接
参考链接

ThreadLocal内部内部有一个类叫ThreadLocalMap,每个Thread内部有一个ThreadLocalMap的实例。

当使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程提供独立的变量副本,所以每一个线程都可以独立地改变自己的副本,而不会影响其它线程所对应的副本。

从线程的角度看,目标变量对象是线程的本地变量,这也是类名中“Local”所要表达的意思。

所以,在Java中编写线程局部变量的代码相对来说要笨拙一些,因此造成线程局部变量没有在Java开发者中得到很好的普及。

ThreadLocal类接口很简单,只有4个方法,我们先来了解一下:

  • void set(Object value)设置当前线程的线程局部变量的值。

  • public Object get()该方法返回当前线程所对应的线程局部变量。

  • public void remove()将当前线程局部变量的值删除,目的是为了减少内存的占用,该方法是JDK 5.0新增的方法。需要指出的是,当线程结束后,对应该线程的局部变量将自动被垃圾回收,所以显式调用该方法清除线程的局部变量并不是必须的操作,但它可以加快内存回收的速度。

  • protected Object initialValue()返回该线程局部变量的初始值,该方法是一个protected的方法,显然是为了让子类覆盖而设计的。这个方法是一个延迟调用方法,在线程第1次调用get()或set(Object)时才执行,并且仅执行1次。ThreadLocal中的缺省实现直接返回一个null。

例子:


package com.test;  
  
public class TestNum 
{  
    // ①通过匿名内部类覆盖ThreadLocal的initialValue()方法,指定初始值  
    private static ThreadLocal<Integer> seqNum = new ThreadLocal<Integer>() 
    {  
        public Integer initialValue() 
        {  
            return 0;  
        }  
    };  
  
    // ②获取下一个序列值  
    public int getNextNum() 
    {  
        seqNum.set(seqNum.get() + 1);  
        return seqNum.get();  
    }  
  
    public static void main(String[] args) 
    {  
        TestNum sn = new TestNum();  
        // ③ 3个线程共享sn,各自产生序列号  
        TestClient t1 = new TestClient(sn);  
        TestClient t2 = new TestClient(sn);  
        TestClient t3 = new TestClient(sn);  
        t1.start();  
        t2.start();  
        t3.start();  
    }  
  
    private static class TestClient extends Thread 
    {  
        private TestNum sn;  
  
        public TestClient(TestNum sn) 
        {  
            this.sn = sn;  
        }  
  
        public void run() 
        {  
            for (int i = 0; i < 3; i++) 
            {  
                // ④每个线程打出3个序列值  
                System.out.println("thread[" + Thread.currentThread().getName() + "] --> sn["  
                         + sn.getNextNum() + "]");  
            }  
        }  
    }  
}  

通常我们通过匿名内部类的方式定义ThreadLocal的子类,提供初始的变量值,如例子中①处所示。TestClient线程产生一组序列号,在③处,我们生成3个TestClient,它们共享同一个TestNum实例。运行以上代码,在控制台上输出以下的结果:

thread[Thread-0] --> sn[1]
thread[Thread-1] --> sn[1]
thread[Thread-2] --> sn[1]
thread[Thread-1] --> sn[2]
thread[Thread-0] --> sn[2]
thread[Thread-1] --> sn[3]
thread[Thread-2] --> sn[2]
thread[Thread-0] --> sn[3]
thread[Thread-2] --> sn[3]

ThreadLocal优势

ThreadLocal会为每一个线程提供一个独立的变量副本,从而隔离了多个线程对数据的访问冲突。因为每一个线程都拥有自己的变量副本,从而也就没有必要对该变量进行同步了。ThreadLocal提供了线程安全的共享对象,在编写多线程代码时,可以把不安全的变量封装进ThreadLocal。

对于多线程资源共享的问题,同步机制采用了“以时间换空间”的方式,而ThreadLocal采用了“以空间换时间”的方式。前者仅提供一份变量,让不同的线程排队访问,而后者为每一个线程都提供了一份变量,因此可以同时访问而互不影响。

java.lang.ThreadLocal的具体实现

那么到底ThreadLocal类是如何实现这种“为每个线程提供不同的变量拷贝”的呢?先来看一下ThreadLocal的set()方法的源码是如何实现的:


    /** 
        * Sets the current thread's copy of this thread-local variable 
        * to the specified value.  Most subclasses will have no need to 
        * override this method, relying solely on the {@link #initialValue} 
        * method to set the values of thread-locals. 
        * 
        * @param value the value to be stored in the current thread's copy of 
        *        this thread-local. 
        */  
       public void set(T value) 
       {  
           Thread t = Thread.currentThread();  
           ThreadLocalMap map = getMap(t);  
           if (map != null)  
               map.set(this, value);  
           else  
               createMap(t, value);  
       }  

在上面的代码中,ThreadLocal变量只有一个,getMap会得到一个ThreadLocalMap的对象,这个ThreadLocalMap对象保存了已经使用这个ThreadLocal对象的数据。

在这个方法内部我们看到,首先通过getMap(Thread t)方法获取一个和当前线程相关的ThreadLocalMap,然后将变量的值设置到这个ThreadLocalMap对象中,当然如果获取到的ThreadLocalMap对象为空,就通过createMap方法创建。

线程隔离的秘密,就在于ThreadLocalMap这个类。ThreadLocalMap是ThreadLocal类的一个静态内部类,它实现了键值对的设置和获取(对比Map对象来理解),每个线程中都有一个独立的ThreadLocalMap副本,它所存储的值,只能被当前线程读取和修改。ThreadLocal类通过操作每一个线程特有的ThreadLocalMap副本,从而实现了变量访问在不同线程中的隔离。因为每个线程的变量都是自己特有的,完全不会有并发错误。还有一点就是,ThreadLocalMap存储的键值对中的键是this对象指向的ThreadLocal对象,而值就是你所设置的对象了。

为了加深理解,我们看一下getMap和createMap方法的实现:


    /** 
     * Get the map associated with a ThreadLocal. Overridden in 
     * InheritableThreadLocal. 
     * 
     * @param  t the current thread 
     * @return the map 
     */  
    ThreadLocalMap getMap(Thread t) {  
        return t.threadLocals;  
    }  
      
    /** 
     * Create the map associated with a ThreadLocal. Overridden in 
     * InheritableThreadLocal. 
     * 
     * @param t the current thread 
     * @param firstValue value for the initial entry of the map 
     * @param map the map to store. 
     */  
    void createMap(Thread t, T firstValue) {  
        t.threadLocals = new ThreadLocalMap(this, firstValue);  
    }  

小结

ThreadLocal是解决线程安全问题一个很好的思路,它通过为每个线程提供一个独立的变量副本解决了变量并发访问的冲突问题。在很多情况下,ThreadLocal比直接使用synchronized同步机制解决线程安全问题更简单,更方便,且结果程序拥有更高的并发性。

ThreadLocal内存溢出

  • 内存泄漏memory leak :是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄漏似乎不会有大的影响,但内存泄漏堆积后的后果就是内存溢出。
  • 内存溢出 out of memory :没内存可以分配给新的对象了。

线程Thread对象中,每个线程对象内部都有一个的ThreadLocalMap对象。如果这个对象存储了多个大对象,则可能早出内存溢出OOM。为了防止这种情况发生,在ThreadLocal的源码中,有对应的策略,即调用 get()、set()、remove() 方法,均会清除 ThreadLocal内部的内存。

为什么ThreadLocalMap中存的是Entry数组?因为一个线程可能存在多个ThreadLocal变量,都会存到Entry数组中,每个ThreadLocal变量的位置是通过计算得到的。

static class ThreadLocalMap 
{
    /**
     * The entries in this hash map extend WeakReference, using
     * its main ref field as the key (which is always a
     * ThreadLocal object).  Note that null keys (i.e. entry.get()
     * == null) mean that the key is no longer referenced, so the
     * entry can be expunged from table.  Such entries are referred to
     * as "stale entries" in the code that follows.
     */
    static class Entry extends WeakReference<ThreadLocal<?>> {
        /** The value associated with this ThreadLocal. */
        Object value;

        Entry(ThreadLocal<?> k, Object v) {
            super(k);
            value = v;
        }
    }

ThreadLocalMap 里面有一个静态内部类Entry,继承自WeakReference。static class Entry extends WeakReference>表示Entry是一个弱引用的ThreadLocal对象

ThreadLocalMap的键是ThreadLocal对象,每个线程都有一个ThreadLocalMap对象,因为Thread类有一个属性就是ThreadLocalMap

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);  //获得该线程的ThreadLocalMap对象
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

void createMap(Thread t, T firstValue) {
    t.threadLocals = new ThreadLocalMap(this, firstValue);
}

ThreadLocal讲解_第1张图片
从上图可以看出,Thread类有一个属性是ThreadLocalMap

ThreadLocal的内部是ThreadLocalMap。ThreadLocalMap内部是由一个Entry数组组成。Entry类的构造函数为 Entry(弱引用的ThreadLocal对象, Object value对象)。因为Entry的key是一个弱引用的ThreadLocal对象,所以在 垃圾回收 之前,将会清除此Entry对象的key。那么,ThreadLocalMap 中就会出现 key 为 null 的 Entry,就没有办法访问这些 key 为 null 的 Entry 的 value。这些 value 被Entry对象引用,所以value所占内存不会被释放。若在指定的线程任务里面,调用ThreadLocal对象的get()、set()、remove()方法,可以避免出现内存泄露。

static class Entry extends WeakReference<ThreadLocal<?>> 
{
    /** The value associated with this ThreadLocal. */
    Object value;

    Entry(ThreadLocal<?> k, Object v) {
        super(k);  //将ThreadLocal传给WeakReference类的构造函数
        value = v;
    }
}

ThreadLocal的get函数:

public T get() {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null) {
    	//因为Map里面有一个内部类是Entry
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null) {
            @SuppressWarnings("unchecked")
            T result = (T)e.value;
            return result;
        }
    }
    return setInitialValue();
}

getEntry函数

通过ThreadLocal的threadLocalhashCode和Entry数组的大小进行按位与计算得到

private Entry getEntry(ThreadLocal<?> key) {

    int i = key.threadLocalHashCode & (table.length - 1);
    Entry e = table[i];
    if (e != null && e.get() == key)
        return e;
    else
        return getEntryAfterMiss(key, i, e);
}

下图虚线表示弱引用。ThreadLocal对象被GC回收了,那么key变成了null。Map又是通过key拿到的value的对象。所以,GC在回收了key所占内存后,没法访问到value的值,因为需要通过key才能访问到value对象。另外,如图所示的引用链:CurrentThread – Map – Entry – value ,所以,在当前线程没有被回收的情况下,value所占内存也不会被回收。所以可能会造成了内存溢出。
ThreadLocal讲解_第2张图片
虚线表示是弱引用。所以说,当ThreadLocal对象被GC回收了以后,Entry对象的key就变成null了。这个时候没法访问到 Object Value了。并且最致命的是,Entry持有Object value。所以,value的内存将不会被释放

因为上述的原因,在ThreadLocal这个类的get()、set()、remove()方法,均有实现回收 key 为 null 的 Entry 的 value所占的内存。所以,为了防止内存泄露(没法访问到的内存),在不会再用ThreadLocal的线程任务末尾,调用一次 上述三个方法的其中一个即可

因此,可以理解到为什么JDK源码中要把Entry对象,用 弱引用的ThreadLocal对象,设计为key,那是因为要手动编写代码释放ThreadLocalMap中 key为null的Entry对象。

GC什么时候回收弱引用的对象?弱引用对象是存活到下一次垃圾回收发生之前对象。

综上:JVM就会自动回收某些对象将其置为null,从而避免OutOfMemory的错误。弱引用的对象可以被JVM设置为null。我们的代码通过判断key是否为null,从而 手动释放 内存泄露的内存。

如果ThreadLocalMap的key被垃圾回收变成了null,可能就get不到了,应该是内存泄露了,值再也不能访问到

总结

总结:

  • ThreadLocalMap的Key为弱引用,来避免内存泄露。
  • JVM利用调用remove、get、set方法的时候,回收弱引用。
  • 当ThreadLocal存储很多Key为null的Entry的时候,而不再去调用remove、get、set方法,那么将导致内存泄漏。
  • 当使用static ThreadLocal的时候,延长ThreadLocal的生命周期,那也可能导致内存泄漏。因为,static变量在类未加载的时候,它就已经加载,当线程结束的时候,static变量不一定会回收。那么,比起普通成员变量使用的时候才加载,static的生命周期加长将更容易导致内存泄漏危机。http://www.importnew.com/22039.html

那么如何有效的避免呢?

事实上,在ThreadLocalMap中的set/getEntry方法中,会对key为null(也即是ThreadLocal为null)进行判断,如果为null的话,那么是会对value置为null的。我们也可以通过调用ThreadLocal的remove方法进行释放!

你可能感兴趣的:(Java并发编程实战)