dex2oat是ART运行模式下虚拟机必备的一个组件,主要用来把安装的apk和动态加载的dex等文件转换成oat文件,方便下一步的加载解析,获得其中的类并执行相关方法,所以本文以Android 6.0源码为例,对dex的处理流程尝试做一下分析,了解其中的处理情况。
dex2oat源码位于art\dex2oat\Dex2oat.cc,入口函数为main:
int main(int argc, char** argv) {
int result = art::dex2oat(argc, argv);
if (!art::kIsDebugBuild && (RUNNING_ON_VALGRIND == 0)) {
exit(result);
}
return result;
}
这里的整体流程如下图所示(图片来自参考文献),后边也主要分析的这个流程上的代码:
直接调用了同文件art 命名空间下的 dex2oat 函数,做下一步的处理:
static int dex2oat(int argc, char** argv) {
b13564922();
TimingLogger timings("compiler", false, false);
Dex2Oat dex2oat(&timings);
// Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError.
dex2oat.ParseArgs(argc, argv);
// Check early that the result of compilation can be written
if (!dex2oat.OpenFile()) {
return EXIT_FAILURE;
}
// Print the complete line when any of the following is true:
// 1) Debug build
// 2) Compiling an image
// 3) Compiling with --host
// 4) Compiling on the host (not a target build)
// Otherwise, print a stripped command line.
if (kIsDebugBuild || dex2oat.IsImage() || dex2oat.IsHost() || !kIsTargetBuild) {
LOG(INFO) << CommandLine();
} else {
LOG(INFO) << StrippedCommandLine();
}
if (!dex2oat.Setup()) {
dex2oat.EraseOatFile();
return EXIT_FAILURE;
}
if (dex2oat.IsImage()) {
return CompileImage(dex2oat);
} else {
return CompileApp(dex2oat);
}
}
dex2oat的整个逻辑是很清晰的:
1. 做一个arm上的workaround,这个与我们分析的主线暂时无关,了解一下就可以了。
2. 构造Dex2oat对象
3. 处理命令行参数
4. 先行判断对于文件是否有写的权限
5. 打印命令行参数
6. 判断dex2oat的setup是否完成
7. 根据是否image分别调用CompileImage或CompileApp的处理
这里放一张来自参考文献的总体流程图:
基本上还是对于dex2oat.Compile的封装,后面都是对写文件和计时的处理:
static int CompileImage(Dex2Oat& dex2oat) {
dex2oat.Compile();
// Create the boot.oat.
if (!dex2oat.CreateOatFile()) {
dex2oat.EraseOatFile();
return EXIT_FAILURE;
}
// Flush and close the boot.oat. We always expect the output file by name, and it will be
// re-opened from the unstripped name.
if (!dex2oat.FlushCloseOatFile()) {
return EXIT_FAILURE;
}
// Creates the boot.art and patches the boot.oat.
if (!dex2oat.HandleImage()) {
return EXIT_FAILURE;
}
// When given --host, finish early without stripping.
if (dex2oat.IsHost()) {
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
// Copy unstripped to stripped location, if necessary.
if (!dex2oat.CopyUnstrippedToStripped()) {
return EXIT_FAILURE;
}
// FlushClose again, as stripping might have re-opened the oat file.
if (!dex2oat.FlushCloseOatFile()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
然后我们再看一下基本一模一样的CompileApp.
static int CompileApp(Dex2Oat& dex2oat) {
dex2oat.Compile();
// Create the app oat.
if (!dex2oat.CreateOatFile()) {
dex2oat.EraseOatFile();
return EXIT_FAILURE;
}
// Do not close the oat file here. We might haven gotten the output file by file descriptor,
// which we would lose.
if (!dex2oat.FlushOatFile()) {
return EXIT_FAILURE;
}
// When given --host, finish early without stripping.
if (dex2oat.IsHost()) {
if (!dex2oat.FlushCloseOatFile()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
// Copy unstripped to stripped location, if necessary. This will implicitly flush & close the
// unstripped version. If this is given, we expect to be able to open writable files by name.
if (!dex2oat.CopyUnstrippedToStripped()) {
return EXIT_FAILURE;
}
// Flush and close the file.
if (!dex2oat.FlushCloseOatFile()) {
return EXIT_FAILURE;
}
dex2oat.DumpTiming();
return EXIT_SUCCESS;
}
CompileImage和CompileApp都调用了dex2oat.Compile()函数:
// Create and invoke the compiler driver. This will compile all the dex files.
void Compile() {
TimingLogger::ScopedTiming t("dex2oat Compile", timings_);
compiler_phases_timings_.reset(new CumulativeLogger("compilation times"));
// Handle and ClassLoader creation needs to come after Runtime::Create
jobject class_loader = nullptr;
Thread* self = Thread::Current();
if (!boot_image_option_.empty()) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
OpenClassPathFiles(runtime_->GetClassPathString(), dex_files_, &class_path_files_);
ScopedObjectAccess soa(self);
// Classpath: first the class-path given.
std::vector<const DexFile*> class_path_files;
for (auto& class_path_file : class_path_files_) {
class_path_files.push_back(class_path_file.get());
}
// Store the classpath we have right now.
key_value_store_->Put(OatHeader::kClassPathKey,
OatFile::EncodeDexFileDependencies(class_path_files));
// Then the dex files we'll compile. Thus we'll resolve the class-path first.
class_path_files.insert(class_path_files.end(), dex_files_.begin(), dex_files_.end());
class_loader = class_linker->CreatePathClassLoader(self, class_path_files);
}
driver_.reset(new CompilerDriver(compiler_options_.get(),
verification_results_.get(),
&method_inliner_map_,
compiler_kind_,
instruction_set_,
instruction_set_features_.get(),
image_,
image_classes_.release(),
compiled_classes_.release(),
nullptr,
thread_count_,
dump_stats_,
dump_passes_,
dump_cfg_file_name_,
compiler_phases_timings_.get(),
swap_fd_,
profile_file_));
driver_->CompileAll(class_loader, dex_files_, timings_);
}
Java不同于其它很多编译型语言的一点是在于它有ClassLoader。在做编译之前,先要对ClassLoader进行预处理。
然后,就创建一个CompilerDriver对象,并调用driver的ComileAll来完成编译。
核心逻辑还是compiler_的初始化。看到构造需要这么多参数,我们需要对于dex2oat的命令行参数了解(art\compiler\driver\Compiler_driver.cc):
CompilerDriver::CompilerDriver(const CompilerOptions* compiler_options,
VerificationResults* verification_results,
DexFileToMethodInlinerMap* method_inliner_map,
Compiler::Kind compiler_kind,
InstructionSet instruction_set,
const InstructionSetFeatures* instruction_set_features,
bool image, std::unordered_set<std::string>* image_classes,
std::unordered_set<std::string>* compiled_classes,
std::unordered_set<std::string>* compiled_methods,
size_t thread_count, bool dump_stats, bool dump_passes,
const std::string& dump_cfg_file_name, CumulativeLogger* timer,
int swap_fd, const std::string& profile_file)
: swap_space_(swap_fd == -1 ? nullptr : new SwapSpace(swap_fd, 10 * MB)),
swap_space_allocator_(new SwapAllocator<void>(swap_space_.get())),
profile_present_(false), compiler_options_(compiler_options),
verification_results_(verification_results),
method_inliner_map_(method_inliner_map),
compiler_(Compiler::Create(this, compiler_kind)),
compiler_kind_(compiler_kind),
instruction_set_(instruction_set),
instruction_set_features_(instruction_set_features),
freezing_constructor_lock_("freezing constructor lock"),
compiled_classes_lock_("compiled classes lock"),
compiled_methods_lock_("compiled method lock"),
compiled_methods_(MethodTable::key_compare()),
non_relative_linker_patch_count_(0u),
image_(image),
image_classes_(image_classes),
classes_to_compile_(compiled_classes),
methods_to_compile_(compiled_methods),
had_hard_verifier_failure_(false),
thread_count_(thread_count),
stats_(new AOTCompilationStats),
dedupe_enabled_(true),
dump_stats_(dump_stats),
dump_passes_(dump_passes),
dump_cfg_file_name_(dump_cfg_file_name),
timings_logger_(timer),
compiler_context_(nullptr),
support_boot_image_fixup_(instruction_set != kMips && instruction_set != kMips64),
dedupe_code_("dedupe code", *swap_space_allocator_),
dedupe_src_mapping_table_("dedupe source mapping table", *swap_space_allocator_),
dedupe_mapping_table_("dedupe mapping table", *swap_space_allocator_),
dedupe_vmap_table_("dedupe vmap table", *swap_space_allocator_),
dedupe_gc_map_("dedupe gc map", *swap_space_allocator_),
dedupe_cfi_info_("dedupe cfi info", *swap_space_allocator_) {
DCHECK(compiler_options_ != nullptr);
DCHECK(verification_results_ != nullptr);
DCHECK(method_inliner_map_ != nullptr);
dex_to_dex_compiler_ = reinterpret_cast(ArtCompileDEX);
compiler_->Init();
CHECK_EQ(image_, image_classes_.get() != nullptr);
// Read the profile file if one is provided.
if (!profile_file.empty()) {
profile_present_ = profile_file_.LoadFile(profile_file);
if (profile_present_) {
LOG(INFO) << "Using profile data form file " << profile_file;
} else {
LOG(INFO) << "Failed to load profile file " << profile_file;
}
}
}
CompilerDriver为编译线程构造了一个线程池。
在CompilerDriver进行编译的时候,分成了两个步骤:
void CompilerDriver::CompileAll(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
DCHECK(!Runtime::Current()->IsStarted());
std::unique_ptr<ThreadPool> thread_pool(
new ThreadPool("Compiler driver thread pool", thread_count_ - 1));
VLOG(compiler) << "Before precompile " << GetMemoryUsageString(false);
PreCompile(class_loader, dex_files, thread_pool.get(), timings);
Compile(class_loader, dex_files, thread_pool.get(), timings);
if (dump_stats_) {
stats_->Dump();
}
}
PreCompile的步骤主要就是两个:
- 做校验
- 做类的初始化
我们将前面判断是否要做校验的部分先略过,这个PreCompile的逻辑看起来就清晰得多。
void CompilerDriver::PreCompile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool, TimingLogger* timings) {
LoadImageClasses(timings);
VLOG(compiler) << "LoadImageClasses: " << GetMemoryUsageString(false);
const bool verification_enabled = compiler_options_->IsVerificationEnabled();
const bool never_verify = compiler_options_->NeverVerify();
// We need to resolve for never_verify since it needs to run dex to dex to add the
// RETURN_VOID_NO_BARRIER.
if (never_verify || verification_enabled) {
Resolve(class_loader, dex_files, thread_pool, timings);
VLOG(compiler) << "Resolve: " << GetMemoryUsageString(false);
}
if (never_verify) {
VLOG(compiler) << "Verify none mode specified, skipping verification.";
SetVerified(class_loader, dex_files, thread_pool, timings);
}
if (!verification_enabled) {
return;
}
Verify(class_loader, dex_files, thread_pool, timings);
VLOG(compiler) << "Verify: " << GetMemoryUsageString(false);
if (had_hard_verifier_failure_ && GetCompilerOptions().AbortOnHardVerifierFailure()) {
LOG(FATAL) << "Had a hard failure verifying all classes, and was asked to abort in such "
<< "situations. Please check the log.";
}
InitializeClasses(class_loader, dex_files, thread_pool, timings);
VLOG(compiler) << "InitializeClasses: " << GetMemoryUsageString(false);
UpdateImageClasses(timings);
VLOG(compiler) << "UpdateImageClasses: " << GetMemoryUsageString(false);
}
针对每一个dex,调用CompileDexFile去编译:
void CompilerDriver::Compile(jobject class_loader, const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool, TimingLogger* timings) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != nullptr);
CompileDexFile(class_loader, *dex_file, dex_files, thread_pool, timings);
}
VLOG(compiler) << "Compile: " << GetMemoryUsageString(false);
}
上面的Compile函数是将多个dex拆成每一个dex文件的粒度,而CompileDexFile再将其拆成每个类的粒度,针对每个类再调用CompileClass来进行编译:
void CompilerDriver::CompileDexFile(jobject class_loader, const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool, TimingLogger* timings) {
TimingLogger::ScopedTiming t("Compile Dex File", timings);
ParallelCompilationManager context(Runtime::Current()->GetClassLinker(), class_loader, this,
&dex_file, dex_files, thread_pool);
context.ForAll(0, dex_file.NumClassDefs(), CompilerDriver::CompileClass, thread_count_);
}
context.ForAll(0, dex_file.NumClassDefs(), CompilerDriver::CompileClass, thread_count_);这条语句中重要的是CompilerDriver::CompileClass,CompilerDriver::CompileClass代表一个回调函数,这个回调函数将一个dex中的类进行编译。
void CompilerDriver::CompileClass(const ParallelCompilationManager* manager,
size_t class_def_index) {
ATRACE_CALL();
const DexFile& dex_file = *manager->GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
ClassLinker* class_linker = manager->GetClassLinker();
jobject jclass_loader = manager->GetClassLoader();
Thread* self = Thread::Current();
{
// Use a scoped object access to perform to the quick SkipClass check.
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ScopedObjectAccess soa(self);
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
if (klass.Get() == nullptr) {
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
} else if (SkipClass(jclass_loader, dex_file, klass.Get())) {
return;
}
}
ClassReference ref(&dex_file, class_def_index);
// Skip compiling classes with generic verifier failures since they will still fail at runtime
if (manager->GetCompiler()->verification_results_->IsClassRejected(ref)) {
return;
}
const uint8_t* class_data = dex_file.GetClassData(class_def);
if (class_data == nullptr) {
// empty class, probably a marker interface
return;
}
CompilerDriver* const driver = manager->GetCompiler();
// Can we run DEX-to-DEX compiler on this class ?
DexToDexCompilationLevel dex_to_dex_compilation_level = kDontDexToDexCompile;
{
ScopedObjectAccess soa(self);
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader*>(jclass_loader)));
dex_to_dex_compilation_level = driver->GetDexToDexCompilationlevel(
soa.Self(), class_loader, dex_file, class_def);
}
ClassDataItemIterator it(dex_file, class_data);
// Skip fields
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
bool compilation_enabled = driver->IsClassToCompile(
dex_file.StringByTypeIdx(class_def.class_idx_));
// Compile direct methods
int64_t previous_direct_method_idx = -1;
while (it.HasNextDirectMethod()) {
uint32_t method_idx = it.GetMemberIndex();
if (method_idx == previous_direct_method_idx) {
// smali can create dex files with two encoded_methods sharing the same method_idx
// http://code.google.com/p/smali/issues/detail?id=119
it.Next();
continue;
}
previous_direct_method_idx = method_idx;
driver->CompileMethod(self, it.GetMethodCodeItem(), it.GetMethodAccessFlags(),
it.GetMethodInvokeType(class_def), class_def_index,
method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level,
compilation_enabled);
it.Next();
}
// Compile virtual methods
int64_t previous_virtual_method_idx = -1;
while (it.HasNextVirtualMethod()) {
uint32_t method_idx = it.GetMemberIndex();
if (method_idx == previous_virtual_method_idx) {
// smali can create dex files with two encoded_methods sharing the same method_idx
// http://code.google.com/p/smali/issues/detail?id=119
it.Next();
continue;
}
previous_virtual_method_idx = method_idx;
driver->CompileMethod(self, it.GetMethodCodeItem(), it.GetMethodAccessFlags(),
it.GetMethodInvokeType(class_def), class_def_index,
method_idx, jclass_loader, dex_file, dex_to_dex_compilation_level,
compilation_enabled);
it.Next();
}
DCHECK(!it.HasNext());
}
前面的代码都在构造编译环境,初始化一些driver等,然后调用了CompileMethod函数将一个方法进行编译:
void CompilerDriver::CompileMethod(Thread* self, const DexFile::CodeItem* code_item,
uint32_t access_flags, InvokeType invoke_type,
uint16_t class_def_idx, uint32_t method_idx,
jobject class_loader, const DexFile& dex_file,
DexToDexCompilationLevel dex_to_dex_compilation_level,
bool compilation_enabled) {
CompiledMethod* compiled_method = nullptr;
uint64_t start_ns = kTimeCompileMethod ? NanoTime() : 0;
MethodReference method_ref(&dex_file, method_idx);
if ((access_flags & kAccNative) != 0) {
// Are we interpreting only and have support for generic JNI down calls?
if (!compiler_options_->IsCompilationEnabled() &&
InstructionSetHasGenericJniStub(instruction_set_)) {
// Leaving this empty will trigger the generic JNI version
} else {
compiled_method = compiler_->JniCompile(access_flags, method_idx, dex_file);
CHECK(compiled_method != nullptr);
}
} else if ((access_flags & kAccAbstract) != 0) {
// Abstract methods don't have code.
} else {
bool has_verified_method = verification_results_->GetVerifiedMethod(method_ref) != nullptr;
bool compile = compilation_enabled &&
// Basic checks, e.g., not .
verification_results_->IsCandidateForCompilation(method_ref, access_flags) &&
// Did not fail to create VerifiedMethod metadata.
has_verified_method &&
// Is eligable for compilation by methods-to-compile filter.
IsMethodToCompile(method_ref);
if (compile) {
// NOTE: if compiler declines to compile this method, it will return null.
compiled_method = compiler_->Compile(code_item, access_flags, invoke_type, class_def_idx,
method_idx, class_loader, dex_file);
}
if (compiled_method == nullptr && dex_to_dex_compilation_level != kDontDexToDexCompile) {
// TODO: add a command-line option to disable DEX-to-DEX compilation ?
// Do not optimize if a VerifiedMethod is missing. SafeCast elision, for example, relies on
// it.
(*dex_to_dex_compiler_)(*this, code_item, access_flags,
invoke_type, class_def_idx,
method_idx, class_loader, dex_file,
has_verified_method ? dex_to_dex_compilation_level : kRequired);
}
}
if (kTimeCompileMethod) {
uint64_t duration_ns = NanoTime() - start_ns;
if (duration_ns > MsToNs(compiler_->GetMaximumCompilationTimeBeforeWarning())) {
LOG(WARNING) << "Compilation of " << PrettyMethod(method_idx, dex_file)
<< " took " << PrettyDuration(duration_ns);
}
}
if (compiled_method != nullptr) {
// Count non-relative linker patches.
size_t non_relative_linker_patch_count = 0u;
for (const LinkerPatch& patch : compiled_method->GetPatches()) {
if (!patch.IsPcRelative()) {
++non_relative_linker_patch_count;
}
}
bool compile_pic = GetCompilerOptions().GetCompilePic(); // Off by default
// When compiling with PIC, there should be zero non-relative linker patches
CHECK(!compile_pic || non_relative_linker_patch_count == 0u);
DCHECK(GetCompiledMethod(method_ref) == nullptr) << PrettyMethod(method_idx, dex_file);
{
MutexLock mu(self, compiled_methods_lock_);
compiled_methods_.Put(method_ref, compiled_method);
non_relative_linker_patch_count_ += non_relative_linker_patch_count;
}
DCHECK(GetCompiledMethod(method_ref) != nullptr) << PrettyMethod(method_idx, dex_file);
}
// Done compiling, delete the verified method to reduce native memory usage. Do not delete in
// optimizing compiler, which may need the verified method again for inlining.
if (compiler_kind_ != Compiler::kOptimizing) {
verification_results_->RemoveVerifiedMethod(method_ref);
}
if (self->IsExceptionPending()) {
ScopedObjectAccess soa(self);
LOG(FATAL) << "Unexpected exception compiling: " << PrettyMethod(method_idx, dex_file) << "\n"
<< self->GetException()->Dump();
}
}
首先是对JNI调用的处理,我们之前曾经看到过的序列。这里会调用compiler_->JniCompile函数。抽象方法不需要生成代码,下面再开始编普通方法,通过调用compiler_->Compile方法来完成。其中还使用到了类的成员变量dex_to_dex_compiler_,这个成员变量在CompilerDriver类的构造函数中被赋值:
CompilerDriver::CompilerDriver(...){
......
dex_to_dex_compiler_ = reinterpret_cast(ArtCompileDEX);
......
}
ArtCompileDEX的实现代码如下:
extern "C" void ArtCompileDEX(art::CompilerDriver& driver, const art::DexFile::CodeItem* code_item,
uint32_t access_flags, art::InvokeType invoke_type,
uint16_t class_def_idx, uint32_t method_idx, jobject class_loader,
const art::DexFile& dex_file,
art::DexToDexCompilationLevel dex_to_dex_compilation_level) {
UNUSED(invoke_type);
if (dex_to_dex_compilation_level != art::kDontDexToDexCompile) {
art::DexCompilationUnit unit(nullptr, class_loader, art::Runtime::Current()->GetClassLinker(),
dex_file, code_item, class_def_idx, method_idx, access_flags,
driver.GetVerifiedMethod(&dex_file, method_idx));
art::optimizer::DexCompiler dex_compiler(driver, unit, dex_to_dex_compilation_level);
dex_compiler.Compile();
}
}
而compiler_->Compile方法中,compiler_是通过Compiler的构造函数中Compiler::Create(this, compiler_kind)创建的(art\compiler\Compiler.cc):
Compiler* Compiler::Create(CompilerDriver* driver, Compiler::Kind kind) {
switch (kind) {
case kQuick:
return CreateQuickCompiler(driver);
case kOptimizing:
return CreateOptimizingCompiler(driver);
default:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
}
举例说明CreateQuickCompiler函数(art\compiler\dex\quick\Quick_compiler.cc):
Compiler* CreateQuickCompiler(CompilerDriver* driver) {
return QuickCompiler::Create(driver);
}
Compiler* QuickCompiler::Create(CompilerDriver* driver) {
return new QuickCompiler(driver);
}
所以如果编译类型为QuickCompile的话,compiler_->Compile方法就调用了QuickCompiler的Compile方法:
CompiledMethod* QuickCompiler::Compile(const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
jobject class_loader,
const DexFile& dex_file) const {
// TODO: check method fingerprint here to determine appropriate backend type. Until then, use
// build default.
CompilerDriver* driver = GetCompilerDriver();
VLOG(compiler) << "Compiling " << PrettyMethod(method_idx, dex_file) << "...";
if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
return nullptr;
}
if (driver->GetVerifiedMethod(&dex_file, method_idx)->HasRuntimeThrow()) {
return nullptr;
}
DCHECK(driver->GetCompilerOptions().IsCompilationEnabled());
Runtime* const runtime = Runtime::Current();
ClassLinker* const class_linker = runtime->GetClassLinker();
InstructionSet instruction_set = driver->GetInstructionSet();
if (instruction_set == kArm) {
instruction_set = kThumb2;
}
CompilationUnit cu(runtime->GetArenaPool(), instruction_set, driver, class_linker);
cu.dex_file = &dex_file;
cu.class_def_idx = class_def_idx;
cu.method_idx = method_idx;
cu.access_flags = access_flags;
cu.invoke_type = invoke_type;
cu.shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
CHECK((cu.instruction_set == kThumb2) ||
(cu.instruction_set == kArm64) ||
(cu.instruction_set == kX86) ||
(cu.instruction_set == kX86_64) ||
(cu.instruction_set == kMips) ||
(cu.instruction_set == kMips64));
// TODO: set this from command line
constexpr bool compiler_flip_match = false;
const std::string compiler_method_match = "";
bool use_match = !compiler_method_match.empty();
bool match = use_match && (compiler_flip_match ^
(PrettyMethod(method_idx, dex_file).find(compiler_method_match) != std::string::npos));
if (!use_match || match) {
cu.disable_opt = kCompilerOptimizerDisableFlags;
cu.enable_debug = kCompilerDebugFlags;
cu.verbose = VLOG_IS_ON(compiler) ||
(cu.enable_debug & (1 << kDebugVerbose));
}
if (driver->GetCompilerOptions().HasVerboseMethods()) {
cu.verbose = driver->GetCompilerOptions().IsVerboseMethod(PrettyMethod(method_idx, dex_file));
}
if (cu.verbose) {
cu.enable_debug |= (1 << kDebugCodegenDump);
}
/*
* TODO: rework handling of optimization and debug flags. Should we split out
* MIR and backend flags? Need command-line setting as well.
*/
InitCompilationUnit(cu);
cu.StartTimingSplit("BuildMIRGraph");
cu.mir_graph.reset(new MIRGraph(&cu, &cu.arena));
/*
* After creation of the MIR graph, also create the code generator.
* The reason we do this is that optimizations on the MIR graph may need to get information
* that is only available if a CG exists.
*/
cu.cg.reset(GetCodeGenerator(&cu, nullptr));
/* Gathering opcode stats? */
if (kCompilerDebugFlags & (1 << kDebugCountOpcodes)) {
cu.mir_graph->EnableOpcodeCounting();
}
/* Build the raw MIR graph */
cu.mir_graph->InlineMethod(code_item, access_flags, invoke_type, class_def_idx, method_idx,
class_loader, dex_file);
if (!CanCompileMethod(method_idx, dex_file, &cu)) {
VLOG(compiler) << cu.instruction_set << ": Cannot compile method : "
<< PrettyMethod(method_idx, dex_file);
cu.EndTiming();
return nullptr;
}
cu.NewTimingSplit("MIROpt:CheckFilters");
std::string skip_message;
if (cu.mir_graph->SkipCompilation(&skip_message)) {
VLOG(compiler) << cu.instruction_set << ": Skipping method : "
<< PrettyMethod(method_idx, dex_file) << " Reason = " << skip_message;
cu.EndTiming();
return nullptr;
}
/* Create the pass driver and launch it */
PassDriverMEOpts pass_driver(GetPreOptPassManager(), GetPostOptPassManager(), &cu);
pass_driver.Launch();
/* For non-leaf methods check if we should skip compilation when the profiler is enabled. */
if (cu.compiler_driver->ProfilePresent()
&& !cu.mir_graph->MethodIsLeaf()
&& cu.mir_graph->SkipCompilationByName(PrettyMethod(method_idx, dex_file))) {
cu.EndTiming();
return nullptr;
}
if (cu.enable_debug & (1 << kDebugDumpCheckStats)) {
cu.mir_graph->DumpCheckStats();
}
if (kCompilerDebugFlags & (1 << kDebugCountOpcodes)) {
cu.mir_graph->ShowOpcodeStats();
}
/* Reassociate sreg names with original Dalvik vreg names. */
cu.mir_graph->RemapRegLocations();
/* Free Arenas from the cu.arena_stack for reuse by the cu.arena in the codegen. */
if (cu.enable_debug & (1 << kDebugShowMemoryUsage)) {
if (cu.arena_stack.PeakBytesAllocated() > 1 * 1024 * 1024) {
MemStats stack_stats(cu.arena_stack.GetPeakStats());
LOG(INFO) << PrettyMethod(method_idx, dex_file) << " " << Dumpable(stack_stats);
}
}
cu.arena_stack.Reset();
CompiledMethod* result = nullptr;
if (cu.mir_graph->PuntToInterpreter()) {
VLOG(compiler) << cu.instruction_set << ": Punted method to interpreter: "
<< PrettyMethod(method_idx, dex_file);
cu.EndTiming();
return nullptr;
}
cu.cg->Materialize();
cu.NewTimingSplit("Dedupe"); /* deduping takes up the vast majority of time in GetCompiledMethod(). */
result = cu.cg->GetCompiledMethod();
cu.NewTimingSplit("Cleanup");
if (result) {
VLOG(compiler) << cu.instruction_set << ": Compiled " << PrettyMethod(method_idx, dex_file);
} else {
VLOG(compiler) << cu.instruction_set << ": Deferred " << PrettyMethod(method_idx, dex_file);
}
if (cu.enable_debug & (1 << kDebugShowMemoryUsage)) {
if (cu.arena.BytesAllocated() > (1 * 1024 *1024)) {
MemStats mem_stats(cu.arena.GetMemStats());
LOG(INFO) << PrettyMethod(method_idx, dex_file) << " " << Dumpable(mem_stats);
}
}
if (cu.enable_debug & (1 << kDebugShowSummaryMemoryUsage)) {
LOG(INFO) << "MEMINFO " << cu.arena.BytesAllocated() << " " << cu.mir_graph->GetNumBlocks()
<< " " << PrettyMethod(method_idx, dex_file);
}
cu.EndTiming();
driver->GetTimingsLogger()->AddLogger(cu.timings);
return result;
}
关于cu.cg->GetCompiledMethod()的不再深挖,此处暂时保留。。。
参老文献:
ART世界探险(13) - 初入dex2oat
dex2oat将dex转换为oat的执行路径概览
ART世界探险(16) - 快速编译器下的方法编译