- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- 领域模型介绍
阿湯哥
架构
领域模型介绍领域模型(DomainModel)是软件系统中用于抽象和表达业务逻辑的核心结构,它将复杂的业务问题转化为代码中的对象、规则和交互关系,帮助开发者以业务语言构建系统。领域模型的核心目标是高内聚、低耦合,通过清晰的边界(BoundedContext)隔离不同业务模块,确保代码与业务需求高度一致。领域模型的核心元素及经典案例我们以电商系统的订单处理流程为例,说明领域模型的核心元素如何协作。1
- Objective-C实现NLP中文分词(附完整源码)
源代码大师
Objective-C实战教程自然语言处理objective-c中文分词
Objective-C实现NLP中文分词实现中文分词(NLP中的重要任务之一)在Objective-C中需要处理文本的切分和识别词语边界。尽管Objective-C在自然语言处理(NLP)领域并不常见,但通过合理的算法设计和数据结构,可以实现基本的中文分词功能。本文将介绍如何使用基于字典的最大匹配算法(MaximumMatchingAlgorithm),例如正向最大匹配(ForwardMaximu
- pytorch阶段性总结2
Colinnian
pytorch人工智能python
nn神经网络functional当中卷积的使用importtorchimporttorch.nn.functionalasF#数据input=torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]])#卷积核kernel=torch.tensor([[1,2,1],[0,1,0],[2,1,0]])#min
- 【模块】AKConv卷积模块
dearr__
扒网络模块深度学习人工智能
论文《AKConv:ConvolutionalKernelwithArbitrarySampledShapesandArbitraryNumberofParameters》1、作用AKConv旨在解决深度学习中标准卷积操作的两个固有限制:限定在局部窗口内,限制了从其他位置捕获信息的能力;卷积核固定大小,限制了对不同目标形状和大小的适应能力。这种新方法允许卷积核具有任意参数和采样形状,提供了一种灵活
- 每日Attention学习24——Strip Convolution Block
xiongxyowo
划水
模块出处[TIP21][link]CoANet:ConnectivityAttentionNetworkforRoadExtractionFromSatelliteImagery模块名称StripConvolutionBlock(SCB)模块作用多方向条形特征提取模块结构模块特点类PSP设计,采用四个并行分支提取不同维度的信息相比于经典的横向/纵向条形卷积,引入了两种斜方向的卷积来更好的学习斜向线
- DCMNet一种用于目标检测的轻量级骨干结构模型详解及代码复现
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法目标检测
模型背景在深度学习技术快速发展的背景下,目标检测领域取得了显著进展。早期的手工特征提取方法如Viola-Jones和HOG逐渐被卷积神经网络(CNN)取代,其中AlexNet在2012年的ILSVRC比赛中表现突出,推动了CNN在计算机视觉中的广泛应用。然而,这些早期模型在精度和效率方面仍存在不足,尤其是在处理复杂场景和小目标时表现不佳。这为DCMNet等新型轻量化目标检测模型的出现提供了契机,旨
- UNet:UNet在自然环境监测中的应用案例_2024-07-24_09-14-11.Tex
chenjj4003
游戏开发2深度学习计算机视觉人工智能性能优化游戏前端javascript
UNet:UNet在自然环境监测中的应用案例UNet模型概述UNet是一种广泛应用于图像分割任务的卷积神经网络模型,由OlafRonneberger、PhilippFischer和ThomasBrox在2015年提出。其设计初衷是为了在生物医学图像分析中进行细胞和组织的精确分割,但因其高效性和准确性,迅速在自然环境监测、遥感图像分析、卫星图像处理等领域找到了应用。架构原理UNet模型采用了一个编码
- 2025,AI变现有哪些机遇与挑战?
Imagination官方博客
人工智能
大模型的能力边界在不断拓宽,主流云端大模型普遍具备了多模态推理能力。技术路线上,也不再局限于算力堆叠,而是探索强化学习、符号推理、类脑计算等新路径。并且,投入更小、更垂直的小模型涌现,为特定领域的应用提供了更高效的解决方案。与此同时,我国大模型领域仍然存在多方面痛点,例如:云端训练成本高、高端算力存在“卡脖子”风险、优质数据匮乏、人才缺口、AI算法开源生态仍需强化、数据安全和隐私问题等等,仍是市场
- VIT(Vision Transformer)【超详细 pytorch实现
周玄九
计算机视觉transformer深度学习人工智能
CNN的局限性:传统的CNN通过局部卷积核提取特征,虽然可以通过堆叠多层卷积扩大感受野,但仍然依赖于局部信息的逐步聚合,难以直接建模全局依赖关系。ViT的优势:ViT使用自注意力机制(Self-Attention),能够直接捕捉图像中所有patch(图像块)之间的全局关系。这种全局建模能力在处理需要长距离依赖的任务(如图像分类、目标检测)时表现更好。全流程图像预处理+分块图像尺寸标准化,如(224
- 深度学习-自学手册
谁用了尧哥这个昵称
AI深度学习
人工智能机器学习神经网络前馈神经网络:没有回路的反馈神经网络:有回路的DNN深度神经网络CNN卷积神经网络RNN循环神经网络LSTM是RNN的一种,长短期记忆网络自然语言处理神经网络神经元-分类器Hebb学习方法,随机–类似SGD一篇神经网络入门BP反向传播,表示很复杂的函数/空间分布从最后一层往前调整参数,反复循环该操作y=a(wx+b)x输入y输出a激活函
- 【leetcode hot 100 11】移动零
longii11
leetcode算法职场和发展
一、暴力解法:两个for循环,外层循环遍历所有可能的左边界,内层循环遍历所有可能的右边界classSolution{publicintmaxArea(int[]height){intmax_area=0;for(inti=0;iarea?max_area:area;}}returnmax_area;}}错误分析:当涉及的数组较大时,会超出时间限制双指针:一个指向数组的头部,一个指向数组的尾部,然后
- Sobel边缘检测算法:图像处理的关键技术
Fkvision
本文还有配套的精品资源,点击获取简介:Sobel算子是图像处理中用于边缘检测的经典方法,通过计算图像的梯度强度和方向来识别边界。本文详细介绍了Sobel算子的设计原理和实现步骤,包括图像的灰度转换、梯度计算、幅值和方向的确定,以及阈值处理和边缘细化。Sobel算子通过卷积操作实现对水平和垂直方向的边缘检测,被广泛应用于各种图像处理场景。文章还将涉及如何使用编程语言和库来实现Sobel边缘检测算法,
- 彻底理解数字图像处理中的卷积-以Sobel算子为例
守得云开现月明
图像处理图像处理
链接:原文出处作者:FreeBlues概述卷积在信号处理领域有极其广泛的应用,也有严格的物理和数学定义.本文只讨论卷积在数字图像处理中的应用.在数字图像处理中,有一种基本的处理方法:线性滤波.待处理的平面数字图像可被看做一个大矩阵,图像的每个像素对应着矩阵的每个元素,假设我们平面的分辨率是1024*768,那么对应的大矩阵的行数=1024,列数=768.用于滤波的是一个滤波器小矩阵(也叫卷积核),
- 在 SQLite 中使用 SpatiaLite 实现地理空间数据自动化读写
高堂明镜悲白发
sqlite自动化数据库GIS
地理空间数据(如坐标点、区域边界)的存储与查询是物联网、位置服务等领域的常见需求。本文提供一套简洁的解决方案,利用SQLite和SpatiaLite扩展,通过触发器和视图实现以下目标:写入简化:直接插入人类可读的坐标文本(如POINT(116.439.9)),自动转为二进制存储。读取简化:查询时自动返回坐标文本,无需手动调用转换函数。代码友好:便于与Python、Java等后端程序集成,隐藏底层空
- 计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
全栈你个大西瓜
人工智能计算机视觉YOLO目标跟踪人工智能数据标注目标检测COCO
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 力扣hot100——排序数组中查找元素出现的第一个位置和最后一个位置
01_
力扣hot100leetcode算法数据结构
给你一个按照非递减顺序排列的整数数组nums,和一个目标值target。请你找出给定目标值在数组中的开始位置和结束位置。如果数组中不存在目标值target,返回[-1,-1]。你必须设计并实现时间复杂度为O(logn)的算法解决此问题。解题思路://二分查找划分左右俩边找//当找到后,左边继续向左边搜,不断更新找到位置就是左边界//同理,右边就是继续向右找,找到右边界classSolution{p
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 第十三站:卷积神经网络(CNN)的优化
武狐肆骸
机器学习cnn人工智能神经网络
前言:在上一期我们构建了基本的卷积神经网络之后,接下来我们将学习一些提升网络性能的技巧和方法。这些优化技术包括数据增强、网络架构的改进、正则化技术。1.数据增强(DataAugmentation)数据增强是提升深度学习模型泛化能力的一种常见手段。通过对训练数据进行各种随机变换,可以生成更多的训练样本,帮助模型避免过拟合。常见的数据增强方法:旋转(Rotation):随机旋转图像,增强模型对旋转变换
- 支持向量机(SVM)简介与应用
Jason_Orton
支持向量机算法机器学习
目录1.什么是支持向量机?2.SVM的基本原理3.核函数与SVM的扩展4.SVM的优势与挑战5.SVM的应用场景6.总结1.什么是支持向量机?支持向量机(SupportVectorMachine,简称SVM)是一种监督学习模型,广泛应用于分类、回归等问题。SVM的核心思想是通过在高维空间中寻找一个超平面(或决策边界),使得不同类别的样本数据能够被该超平面尽可能地分开,同时最大化分类间隔(Margi
- DeepSeek 提示词:基础结构
伏羲栈
人工智能deepseek提示词人工智能
博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程,高并发设计,Springboot和微服务,熟悉Linux,ESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分
- 用AI写游戏3——python实现坦克大战1
AnalogElectronic
python数据人工智能python游戏pygame
用python实现一个坦克大战小游戏,屏幕大小宽高1000x800px敌人有10个坦克,会发射子弹,会随机自由移动,碰撞到屏幕边界会反弹,我方是一个黄颜色坦克,能发子弹,能移动,子弹集中敌人坦克就爆炸消失,并得到10分,所有坦克消灭后游戏胜利,我方被敌人坦克子弹击中则爆炸消失,游戏结束。1、KIMI实现实现效果:实现一个完整的坦克大战小游戏需要使用Python的图形库,比如pygame。以下是一个
- 用AI写游戏3——用java实现坦克大战游戏1
AnalogElectronic
Java游戏程序设计教程游戏javapython
用javaswing,jdk8实现一个坦克大战小游戏,屏幕大小宽高1000x800px敌人有10个坦克,会发射子弹,会随机自由移动,碰撞到屏幕边界会反弹,我方是一个黄颜色坦克,能发子弹,能移动,移动方向子弹方向也要跟着改变,子弹击中敌人坦克就爆炸消失,并得到10分,所有坦克消灭后游戏胜利,我方被敌人坦克子弹击中则爆炸消失,游戏结束。好的,我现在需要帮用户用JavaSwing和JDK8实现一个坦克大
- 【例1109】create boundaries 创建边界
王牌飞行员_里海
NX二次开发经典案例里海NX二次开发3000例NX二次开发UG二次开发嵌入式硬件C++
文章作者:里海来源网站:NX二次开发官方案例专栏简介《createboundaries根据代码,将“createboundaries”翻译为:创建边界》这是一个NX二次开发官方小例子,下面是代码和解析。相较于混乱、未经验证的代码,官方案例能够确保开发者获得准确的开发方法,这些官方示例代码经过严格测试,能够正确地反映出NX软件的功能和API使用方式,有助于开发者系统地掌握NX二次开发技能,提高开发质
- 聊一聊提升测试用例覆盖率需要从哪几方面入手?
Feng.Lee
漫谈测试测试用例服务器运维
目录一、需求覆盖:确保无遗漏二、代码覆盖:工具辅助优化三、路径覆盖:逻辑深度遍历四、边界值覆盖:防御性测试设计五、异常场景覆盖:模拟真实故障六、兼容性覆盖:全环境验证七、性能覆盖:压力与稳定性八、历史缺陷覆盖:经验驱动九、测试数据覆盖:多样性输入十、自动化覆盖:高效执行十一、评审与优化:持续改进十二、工具与技术创新十三、风险驱动测试:聚焦关键点十四、持续追踪与反馈提升测试用例的覆盖率,可以从测试用
- DeepSeep开源周,第三天:DeepGEMM是啥?
程序员差不多先生
pytorch
DeepGEMM是Deepseek开源的一个高性能矩阵乘法优化库,专为深度学习场景设计。矩阵乘法(GEMM)是深度学习模型的核心运算(如全连接层、卷积层等),其性能直接影响训练和推理效率。DeepGEMM通过算法优化、硬件指令集加速和并行计算技术,显著提升计算速度,适用于GPU、CPU等硬件平台。对开发者的用处性能提升优化计算密集型任务(如LLM训练/推理),降低延迟,提升吞吐量。支持混合精度计算
- 网络安全产品
星鬼123
网络安全相关web安全安全
安全产品与特点概览文章目录安全产品与特点概览**1.边界防护类****2.网络优化与管控类****3.终端与数据安全类****4.高级威胁防御类****5.云与新兴安全类****6.安全运营闭环**特点1.边界防护类防火墙设备核心功能:网络区域逻辑隔离、VPN加密通信、访问控制策略管理。关键技术:五元组过滤(源/目IP、端口、协议);下一代防火墙(NGFW)支持应用层识别;VPN虚拟化隧道(IPS
- DeepSeek 智慧城市应用:交通流量预测(918)
web13508588635
面试学习路线阿里巴巴智慧城市人工智能
**摘要:**本文探讨了利用DeepSeek技术框架解决城市交通流量预测问题的方法,主要内容包括基于时空图卷积网络(ST-GCN)的预测模型、多传感器数据融合策略以及实时推理API服务的搭建,旨在为智慧城市的交通管理提供高效、准确的解决方案。**引言:**随着城市化进程的加速,交通拥堵成为城市发展的顽疾。准确的交通流量预测对于优化交通管理、提升出行效率至关重要。DeepSeek作为先进的技术框架,
- 数据结构->二叉树初阶学习心得
一步一码-农
数据结构
二叉树二叉树节点定义structBinTreeNode{TreeNodeTypeval;BinTreeNode*left;BinTreeNode*right;}二叉树涉及算法思想递归递归要点:这个递归函数的功能是什么,怎样调用这个函数,即设计好递归函数的返回值和参数列表什么时候应该结束这个递归,它的边界条件(出口)是什么?在非边界情况时,怎样从第n层转变成第n+1层(递推公式)注:递归思想最重要的
- 机器学习安全核心算法全景解析
金外飞176
网络空间安全机器学习安全算法
机器学习安全核心算法全景解析引言机器学习系统的脆弱性正成为安全攻防的新战场。从数据投毒到模型窃取,攻击者不断突破传统防御边界。本文系统性梳理ML安全关键技术图谱,重点解析12类核心算法及其防御价值。一、数据安全防护算法1.对抗样本防御算法名称核心思想2024年最新进展典型应用场景TRADES鲁棒性-准确性权衡优化Facebook提出自监督TRADES改进版自动驾驶目标检测JacobianSVD输入
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key