邬书豪:车联网数据挖掘工程师 ,人工智能爱好者社区负责人。
微信ID:tsaiedu
知乎专栏:https://www.zhihu.com/people/wu-shu-hao-67/activities
往期回顾
R可视化分析链家网南京楼市数据
kaggle案例:数据科学社区调查报告(附学习视频)
kaggle案例:员工离职预测(附学习视频)
Kaggle案例~R可视化分析美国枪击案(附数据集和代码)
if (!require(devtools)) library(devtools)
install_github("madlogos/recharts")
1.散点图/气泡图
echartr(iris, x=SepalWidth, y=PetalWidth)
多个维度:series控制
echartr(iris, x=SepalWidth, y=PetalWidth, series=Species)
气泡图:type:标签控制
echartr(iris, SepalWidth, PetalWidth,series = Species, weight=PetalLength, type='bubble')
2.管道操作
echartr(iris, SepalWidth, PetalWidth, weight=PetalLength) %>%
setDataRange(calculable=TRUE, splitNumber=0, labels=c('Big','Small'),
color=c('red', 'yellow', 'green'), valueRange=c(0, 2.5))
3.折线图
先改造下内置数据集:
aq <- airquality
aq$Date <- as.Date(paste('1973', aq$Month, aq$Day, sep='-'))
aq$Day <- as.character(aq$Day)
aq$Month <- factor(aq$Month, labels=c("May", "Jun", "Jul", "Aug", "Sep"))
echartr(aq, Date, Temp, type='line') %>%
setTitle('NY Temperature May - Sep 1973') %>% setSymbols('none')
含有分类属性:
echartr(aq, Day, Temp, Month, type='line') %>%
setTitle('NY Temperature May - Sep 1973, by Month') %>%
setSymbols('emptycircle')
带有时间轴(带有动态效果哦~~~):
echartr(aq, Day, Temp, t=Month, type='line') %>%
setTitle('NY Temperature May - Sep 1973, by Month') %>%
setSymbols('emptycircle')
也可画面积图:type属性控制
echartr(aq, Day, Temp, Month, type='area', subtype='stack') %>%
setTitle('NY Temperature May - Sep 1973, by Month') %>%
setSymbols('emptycircle')
4.饼图
重构内置数据集
titanic <- data.table::melt(apply(Titanic, c(1,4), sum))
names(titanic) <- c('Class', 'Survived', 'Count')
knitr::kable(titanic)
画饼图,可以和漏斗图切换
echartr(titanic, Class, Count, type='pie') %>%
setTitle('Titanic: N by Cabin Class')
多个饼图:
echartr(titanic, Survived, Count, facet=Class, type='pie') %>%
setTitle('Titanic: Survival Outcome by Cabin Class')
环图:
echartr(titanic, Survived, Count, facet=Class, type='ring') %>%
setTitle('Titanic: Survival Outcome by Cabin Class')
信息图样环图:
ds <- data.frame(q=c('68% feel good', '29% feel bad', '3% have no feelings'),
a=c(68, 29, 3))
g <- echartr(ds, q, a, type='ring', subtype='info') %>%
setTheme('macarons', width=800, height=600) %>%
setTitle('How do you feel?','ring_info',
pos=c('center','center', 'horizontal'))
g
南丁格尔玫瑰图:
echartr(titanic, Class, Count, facet=Survived, type='rose', subtype='radius') %>%
setTitle('Titanic: Survival Outcome by Cabin Class')
5.雷达图:
重构内置数据集
cars = mtcars[c('Merc 450SE','Merc 450SL','Merc 450SLC'),
c('mpg','disp','hp','qsec','wt','drat')]
cars$model <- rownames(cars)
cars <- data.table::melt(cars, id.vars='model')
names(cars) <- c('model', 'indicator', 'Parameter')
knitr::kable(cars)
单个雷达图
echartr(cars, indicator, Parameter, model, type='radar', sub='fill') %>%
setTitle('Merc 450SE vs 450SL vs 450SLC')
多个雷达图:
echartr(cars, indicator, Parameter, facet=model, type='radar') %>%
setTitle('Merc 450SE vs 450SL vs 450SLC')
6.比较有趣的dashboard
构造一个数据集:
data = data.frame(x=rep(c('KR/min', 'Kph'), 2), y=c(3.3, 56, 9.5, 88),
z=c(rep('t1', 2), rep('t2', 2)))
knitr::kable(data)
echartr(data, x, y, type='gauge')
多个dashboard:
echartr(data, x, y, facet=x, type='gauge')
带时间轴:
echartr(data, x, y, facet=x, t=z, type='gauge')
基本上常用的数据图表展示recharts都可以很方便和很酷炫的展示,作者只是挑选了几个比较常用的图表类型做了抛砖迎玉.
具体的细节各位可以去查看具体的文档:https://madlogos.github.io/recharts/index_cn.html#-en
往期精彩内容整理合集:
2017年R语言发展报告(国内)
R语言中文社区历史文章整理(作者篇)
R语言中文社区历史文章整理(类型篇)
相关课程推荐
☟☟☟ 猛戳阅读原文,即刻加入课程。