I2C是一种接口,硬件连接是通过SDA和SCL两条线,传输的时候遵从I2C协议。
上图中:master主设备,由soc担当。SCL提供时钟,SDA提供数据。
驱动是站在master角度读写设备的。所有的I2C从设备都在一条线上,每个从设备都有自己的从设备地址。当主设备需要访问从设备的时候,发送从设备地址。
在scl为高电平时,SDA由高电平向低电平跳变,表示开始发送数据。发送8个bit,七个bit数据,最后一位为读写位。
第九个周期的时候,SDA拉高,从设备回应ACK,把电平拉低表示回应。每次读写完成之后多有一个Ack表示是否读写成功。
在scl为高电平时,SDA由低电平向高电平跳变,表示结束发送数据。
设备接口,要遵循协议。读写是1/0表示。每个周期传递一个数据。
在scl为高电平的时候sda数据才有效,
图中I2C client(其实就是device)不是自己创建的,I2C driver才是自己创建的
i2c子系统软件框架
应用
------------------------------------------
i2c driver:从设备驱动层
需要和应用层进行交互
封包数据,不知道数据是如何写入到硬件
------------------------------------------
i2c 核心层:维护i2c 总线,包括i2c driver, i2c client链表
drivers/i2c/i2c-core.c
---------------------------------------------------
i2c adapter层:i2c控制层,初始化i2c控制器 (有个算法maste-xfer())
完成将数据写入或读取-从设备硬件
不知道数据具体是什么,但是知道如何操作从设备
drivers/i2c/busses/i2c-s3c2410.c
我们只需要编写I2C_driver和I2C_client
确保i2c core和i2c adatper层必须编译进内核:需要对内核进行配置
make menuconfig
Device Drivers --->
-*- I2C support ---> //编译i2c-core.c
I2C Hardware Bus support --->
<*> S3C2410 I2C Driver // i2c-s3c2410.c
/sys/bus/i2c/
/sys/bus/i2c/devices/i2c-0
[root@farsight i2c-0]# cat name
s3c2410-i2c
SOC中不一定有一组I2C接口,4412中有9组,通过查电路图,可以看到MPU6050接到第五组上边,有第0组开始。
i2c控制器地址
0x1386_0000,
0x1387_0000,
0x1388_0000,
0x1389_0000,
0x138A_0000,
0x138B_0000, ------ MPU6050
0x138C_0000,
0x138D_0000,
0x138E_0000
MPU6050: 从设备地
址是0x68
soc GPB_2— I2C_SCL5
GPB_3— I2C_SDA5
GPX3_3— GYRO_INT //确定设备什么时候动了。
在内核中默认就有了i2c0--13860000.i2c
模板:
控制器对应的设备树:arch/arm/boot/dts/exynos4.dtsi
i2c_0: i2c@13860000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "samsung,s3c2440-i2c";
reg = <0x13860000 0x100>;
interrupts = <0 58 0>;
clocks = <&clock 317>;
clock-names = "i2c";
pinctrl-names = "default";
pinctrl-0 = <&i2c0_bus>;
status = "disabled";
};
i2c_5: i2c@138B0000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "samsung,s3c2440-i2c";
reg = <0x138B0000 0x100>;
interrupts = <0 63 0>;
clocks = <&clock 322>;
clock-names = "i2c";
status = "disabled";
};
描述从设备信息的设备树的模板
arch/arm/boot/dts/exynos4412-fs4412.dts
i2c@13860000 {
#address-cells = <1>;
#size-cells = <0>;
samsung,i2c-sda-delay = <100>;
samsung,i2c-max-bus-freq = <20000>;
pinctrl-0 = <&i2c0_bus>;
pinctrl-names = "default";
status = "okay";
s5m8767_pmic@66 {
compatible = "samsung,s5m8767-pmic";
reg = <0x66>;
}
}
新增加i2c从设备,arch/arm/boot/dts/exynos4412-fs4412.dts增加i2c5控制和它包含的从设备设备
i2c@138B0000 {/*i2c adapter5信息*/
#address-cells = <1>;
#size-cells = <0>;
samsung,i2c-sda-delay = <100>;
samsung,i2c-max-bus-freq = <20000>;
pinctrl-0 = <&i2c5_bus>;
pinctrl-names = "default";
status = "okay";
mpu6050@68 { /*i2c client信息*/
compatible = "invensense,mpu6050";
reg = <0x68>;
};
};
保存后make dtbs
cp -raf arch/arm/boot/dts/exynos4412-fs4412.dtb /tftpboot/
I2Cdriver驱动的编写:
a, 添加i2c client的信息,必须包含在控制器对应的节点中
b,直接编写i2c driver
1,构建i2c driver,并注册到i2c总线
2,实现probe:
|
申请设备号,实现fops
创建设备文件
通过i2c的接口去初始化i2c从设备
几个常用的对象:
1.struct i2c_driver {//表示是一个从设备的驱动对象
int (*probe)(struct i2c_client *, const struct i2c_device_id *);
int (*remove)(struct i2c_client *);
struct device_driver driver; //继承了父类
|
const struct of_device_id *of_match_table;//of开头的,一般都表示设备树中的。
const struct i2c_device_id *id_table;//用于做比对,非设备树的情况
}
注册和注销
int i2c_add_driver( struct i2c_driver *driver);
void i2c_del_driver(struct i2c_driver *);
2.struct i2c_client {//描述一个从设备的信息,不需要在代码中创建,因为是由i2c adapter帮我们创建
unsigned short addr; //从设备地址,来自于设备树中
char name[I2C_NAME_SIZE]; //用于和i2c driver进行匹配,来自于设备树中compatible
struct i2c_adapter *adapter;//指向当前从设备所存在的i2c adapter,属于哪个总线中
struct device dev; // 继承了父类
};
3.struct i2c_adapter {//描述一个i2c控制器,也不是我们要构建,原厂的代码会帮我们构建
const struct i2c_algorithm *algo; //算法
|
int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,int num);
struct device dev; //继承了父类,也会被加入到i2c bus
int nr; //编号
}
注册和注销:
int i2c_add_adapter(struct i2c_adapter * adapter);
void i2c_del_adapter(struct i2c_adapter * adap);
4.struct i2c_msg {//描述一个从设备要发送的数据的数据包
__u16 addr; //从设备地址,发送给那个从设备
__u16 flags; //读1还是写0
__u16 len; //发送数据的长度
__u8 *buf; //指向数据的指针
};
//写从设备
int i2c_master_send(const struct i2c_client * client,const char * buf,int count)
//读从设备
int i2c_master_recv(const struct i2c_client * client,char * buf,int count)
以上两个函数都调用了:
int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "mpu6050.h"
#define SMPLRT_DIV 0x19 //采样频率寄存器-25 典型值:0x07(125Hz)
//寄存器集合里的数据根据采样频率更新
#define CONFIG 0x1A //配置寄存器-26-典型值:0x06(5Hz)
//DLPF is disabled(DLPF_CFG=0 or 7)
#define GYRO_CONFIG 0x1B//陀螺仪配置-27,可以配置自检和满量程范围
//典型值:0x18(不自检,2000deg/s)
#define ACCEL_CONFIG 0x1C //加速度配置-28 可以配置自检和满量程范围及高通滤波频率
//典型值:0x01(不自检,2G,5Hz)
#define ACCEL_XOUT_H 0x3B //59-65,加速度计测量值 XOUT_H
#define ACCEL_XOUT_L 0x3C // XOUT_L
#define ACCEL_YOUT_H 0x3D //YOUT_H
#define ACCEL_YOUT_L 0x3E //YOUT_L
#define ACCEL_ZOUT_H 0x3F //ZOUT_H
#define ACCEL_ZOUT_L 0x40 //ZOUT_L---64
#define TEMP_OUT_H 0x41 //温度测量值--65
#define TEMP_OUT_L 0x42
#define GYRO_XOUT_H 0x43 //陀螺仪值--67,采样频率(由寄存器 25 定义)写入到这些寄存器
#define GYRO_XOUT_L 0x44
#define GYRO_YOUT_H 0x45
#define GYRO_YOUT_L 0x46
#define GYRO_ZOUT_H 0x47
#define GYRO_ZOUT_L 0x48 //陀螺仪值--72
#define PWR_MGMT_1 0x6B //电源管理 典型值:0x00(正常启用)
//设计一个全局的设备对象
struct mpu_sensor{
int dev_major;
struct device *dev;
struct class *cls;
struct i2c_client *client;//记录probe中client
};
struct mpu_sensor *mpu_dev;
int mpu6050_write_bytes(struct i2c_client *client, char *buf, int count)
{
int ret;
struct i2c_adapter *adapter = client->adapter;
struct i2c_msg msg;
msg.addr = client->addr;
msg.flags = 0;
msg.len = count;
msg.buf = buf;
ret = i2c_transfer(adapter, &msg, 1);
return ret==1?count:ret;
}
int mpu6050_read_bytes(struct i2c_client *client, char *buf, int count)
{
int ret;
struct i2c_adapter *adapter = client->adapter;
struct i2c_msg msg;
msg.addr = client->addr;
msg.flags = I2C_M_RD;
msg.len = count;
msg.buf = buf;
ret = i2c_transfer(adapter, &msg, 1);
return ret==1?count:ret;
}
//读取某个特定寄存器的地址,然后返回值
int mpu6050_read_reg_byte(struct i2c_client *client, char reg)
{
// 先写寄存器的地址, 然后在读寄存器的值
int ret;
struct i2c_adapter *adapter = client->adapter;
struct i2c_msg msg[2];
char rxbuf[1];
msg[0].addr = client->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = ®
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = 1;
msg[1].buf = rxbuf;
ret = i2c_transfer(adapter, msg, 2);
if(ret < 0)
{
printk("i2c_transfer read error\n");
return ret;
}
return rxbuf[0];
}
int mpu6050_drv_open(struct inode *inode, struct file *filp)
{
return 0;
}
int mpu6050_drv_close(struct inode *inode, struct file *filp)
{
return 0;
}
long mpu6050_drv_ioctl (struct file *filp, unsigned int cmd, unsigned long args)
{
union mpu6050_data data;
switch(cmd){
case IOC_GET_ACCEL:
//读数据
data.accel.x = mpu6050_read_reg_byte(mpu_dev->client, ACCEL_XOUT_L);
data.accel.x |= mpu6050_read_reg_byte(mpu_dev->client, ACCEL_XOUT_H) << 8;
data.accel.y = mpu6050_read_reg_byte(mpu_dev->client, ACCEL_YOUT_L);
data.accel.y |= mpu6050_read_reg_byte(mpu_dev->client, ACCEL_YOUT_H) << 8;
data.accel.z = mpu6050_read_reg_byte(mpu_dev->client, ACCEL_ZOUT_L);
data.accel.z |= mpu6050_read_reg_byte(mpu_dev->client, ACCEL_ZOUT_H) << 8;
break;
case IOC_GET_GYRO:
data.gyro.x = mpu6050_read_reg_byte(mpu_dev->client, GYRO_XOUT_L);
data.gyro.x |= mpu6050_read_reg_byte(mpu_dev->client, GYRO_XOUT_H) << 8;
data.gyro.y = mpu6050_read_reg_byte(mpu_dev->client, GYRO_YOUT_L);
data.gyro.y |= mpu6050_read_reg_byte(mpu_dev->client, GYRO_YOUT_H) << 8;
data.gyro.z= mpu6050_read_reg_byte(mpu_dev->client, GYRO_ZOUT_L);
data.gyro.z |= mpu6050_read_reg_byte(mpu_dev->client, GYRO_ZOUT_H) << 8;
break;
case IOC_GET_TEMP:
data.temp = mpu6050_read_reg_byte(mpu_dev->client, TEMP_OUT_L);
data.temp |= mpu6050_read_reg_byte(mpu_dev->client, TEMP_OUT_H) << 8;
break;
default:
printk("invalid cmd\n");
return -EINVAL;
}
//将所有的数据交给用户
if(copy_to_user((void __user * )args, &data, sizeof(data)) > 0)
return -EFAULT;
return 0;
}
const struct file_operations mpu6050_fops = {
.open = mpu6050_drv_open,
.release = mpu6050_drv_close,
.unlocked_ioctl = mpu6050_drv_ioctl,
};
int mpu6050_drv_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
printk("-----%s----\n", __FUNCTION__);
/*
申请设备号,实现fops
创建设备文件
通过i2c的接口去初始化i2c从设备
*/
mpu_dev = kzalloc(sizeof(struct mpu_sensor), GFP_KERNEL);
mpu_dev->client = client;
mpu_dev->dev_major = register_chrdev(0,"mpu_drv", &mpu6050_fops);
mpu_dev->cls = class_create(THIS_MODULE, "mpu_cls");
mpu_dev->dev = device_create(mpu_dev->cls, NULL, MKDEV(mpu_dev->dev_major, 0),NULL, "mpu_sensor");
char buf1[2] = {PWR_MGMT_1, 0x0};
mpu6050_write_bytes(mpu_dev->client, buf1, 2);
char buf2[2] = {SMPLRT_DIV, 0x07};
mpu6050_write_bytes(mpu_dev->client, buf2, 2);
char buf3[2] = {CONFIG, 0x06};
mpu6050_write_bytes(mpu_dev->client, buf3, 2);
char buf4[2] ={GYRO_CONFIG, 0x18};
mpu6050_write_bytes(mpu_dev->client, buf4, 2);
char buf5[2] = {ACCEL_CONFIG, 0x01};
mpu6050_write_bytes(mpu_dev->client, buf5, 2);
return 0;
}
int mpu5060_drv_remove(struct i2c_client *client)
{
printk("-----%s----\n", __FUNCTION__);
device_destroy(mpu_dev->cls, MKDEV(mpu_dev->dev_major, 0));
class_destroy(mpu_dev->cls);
unregister_chrdev(mpu_dev->dev_major, "mpu_drv");
kfree(mpu_dev);
return 0;
}
const struct of_device_id of_mpu6050_id[] = {
{
.compatible = "invensense,mpu6050",
},
{/*northing to be done*/},
};
const struct i2c_device_id mpu_id_table[] = {
{"mpu6050_drv", 0x1111},
{/*northing to be done*/},
};
struct i2c_driver mpu6050_drv = {
.probe = mpu6050_drv_probe,
.remove = mpu5060_drv_remove,
.driver = {
.name = "mpu6050_drv",//随便写,/sys/bus/i2c/driver/mpu6050_drv
.of_match_table = of_match_ptr(of_mpu6050_id),
},
.id_table = mpu_id_table,//非设备树情况下的匹配,在设备树的模式下不需要使用
};
static int __init mpu6050_drv_init(void)
{
// 1,构建i2c driver,并注册到i2c总线
return i2c_add_driver(&mpu6050_drv);
}
static void __exit mpu6050_drv_exit(void)
{
i2c_del_driver(&mpu6050_drv);
}
module_init(mpu6050_drv_init);
module_exit(mpu6050_drv_exit);
MODULE_LICENSE("GPL");