字符串最小/最大表示法 学习与总结

循环字符串的最小表示法的问题可以这样描述:

对于一个字符串S,求S的循环的同构字符串S’中字典序最小的一个。

由于语言能力有限,还是用实际例子来解释比较容易:
设S=bcad,且S’是S的循环同构的串。S’可以是bcad或者cadb,adbc,dbca。而且最小表示的S’是adbc。
对于字符串循环同构的最小表示法,其问题实质是求S串的一个位置,从这个位置开始循环输出S,得到的S’字典序最小。
一种朴素的方法是设计i,j两个指针。其中i指向最小表示的位置,j作为比较指针。

令i=0,j=1
如果S[i] > S[j] i=j, j=i+1
如果S[i] < S[j] j++
如果S[i]==S[j] 设指针k,分别从i和j位置向下比较,直到S[i] != S[j]
         如果S[i+k] > S[j+k] i=j,j=i+1
         否则j++
返回i

起初,我想在j指针后移的过程中加入一个优化。就是j每次不是加1,而是移动到l位置。其中,l>j且S[l]<=S[j]。但是,即使加入这一优化,在遇到bbb…bbbbbba这样的字符串时复杂度将退化到O(n^2)。

注意到,朴素算法的缺陷在于斜体的情况下i指针的移动太少了。针对这一问题改进就得到了最小表示法的算法。最小表示法的算法思路是维护两个指针i,j。

令i=0,j=1
如果S[i] > S[j] i=j, j=i+1
如果S[i] < S[j] j++
如果S[i]==S[j] 设指针k,分别从i和j位置向下比较,直到S[i] != S[j]
         如果S[i+k] > S[j+k] i=i+k
         否则j++
返回i和j的小者

注意到上面两个算法唯一的区别是粗体的一行。这一行就把复杂度降到O(n)了。
值得一提的是,与KMP类似,最小表示法处理的是一个字符串S的性质,而不是看论文时给人感觉的处理两个字符串。
应用最小表示法判断两个字符串同构,只要将两个串的最小表示求出来,然后从最小表示开始比较。剩下的工作就不用多说了。

[cpp]  view plain  copy
  1. int MinimumRepresentation(char *s, int l)  
  2. {  
  3.     int i = 0, j = 1, k = 0, t;  
  4.     while(i < l && j < l && k < l) {  
  5.         t = s[(i + k) >= l ? i + k - l : i + k] - s[(j + k) >= l ? j + k - l : j + k];  
  6.         if(!t) k++;  
  7.         else{  
  8.             if(t > 0) i = i + k + 1;  
  9.             else j = j + k + 1;  
  10.             if(i == j) ++ j;  
  11.             k = 0;  
  12.         }  
  13.     }  
  14.     return (i < j ? i : j);  
  15. }  

然后主函数 设置变量 = 所求的, 循环输出, 不断++, %=n就好了

这是我看的博客

然后自己总结出来 不就是一个比较的过程 维护两个指针 哪个大让哪个指针放后面 跳出时返回最小指针即可 也就是最小字符串的开始位置 注意是0-n-1,不是1-n

算法的优化就是让之前很多相等的时候 直接右移大一点 因为你每次就算移1也不过是很多个过程实现了最终这一步

指针>len时候break 以及都是aaaaaaaaaaaaaaaaaaa也可以跳出比如循环串bcdabcda也可以跳出

模板

int getmin(string str)
    {
    	int i = 0;
    	int j = 1;
    	int k = 0;
    	int len = str.length();
    	while (j < len && i < len && k < len)
    	{
    		if (str[(i + k) %len] == str[(j + k)%len ])
    		{
    			k++;
    		}
    		else
    		{
    			if (str[(i + k) %len] > str[(j + k) %len])
    			{
    				i = i + k + 1;
    			}
    			else
    			{
    				j = j + k + 1;
    			}
    			if (i == j)
    				j++;
    			k = 0;
    		}
    	}
    	return i < j ? i : j;
    }
    
        int maxnum(char s[],int t1)
    {
        for(int i=0;i

你可能感兴趣的:(ACM,KMP)