解
∫ − π 2 π 2 3 e x sin 2 x 1 + e x d x = x = − t ∫ − π 2 π 2 3 e − t sin 2 t 1 + e − t d t = 3 ∫ − π 2 π 2 sin 2 t 1 + e t d t = 3 2 ∫ − π 2 π 2 sin 2 t d t = 3 ⋅ 1 2 ⋅ π 2 = 3 π 4 . \begin{aligned} \displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{3e^x\sin^2x}{1+e^x}\mathrm{d}x&\xlongequal{x=-t}\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{3e^{-t}\sin^2t}{1+e^{-t}}\mathrm{d}t=3\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\cfrac{\sin^2t}{1+e^{t}}\mathrm{d}t\\ &=\cfrac{3}{2}\displaystyle\int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\sin^2t\mathrm{d}t=3\cdot\cfrac{1}{2}\cdot\cfrac{\pi}{2}=\cfrac{3\pi}{4}. \end{aligned} ∫−2π2π1+ex3exsin2xdxx=−t∫−2π2π1+e−t3e−tsin2tdt=3∫−2π2π1+etsin2tdt=23∫−2π2πsin2tdt=3⋅21⋅2π=43π.
(这道题主要利用了换元积分法求解)
解
∫ 0 + ∞ x e − 3 x ( 1 + e − 3 x ) 2 d x = ∫ 0 + ∞ x e 3 x ( 1 + e 3 x ) 2 d x = − 1 3 ∫ 0 + ∞ x d ( 1 1 + e 3 x ) = − x e 3 x 1 + e 3 x ∣ 0 + ∞ + 1 3 ∫ 0 + ∞ 1 1 + e 3 x d x = 1 3 ∫ 0 + ∞ e 3 x e 3 x ( 1 + e 3 x ) d x = 1 9 ln e 3 x e 3 x + 1 ∣ 0 + ∞ = 1 9 ln 2. \begin{aligned} \displaystyle\int^{+\infty}_0\cfrac{xe^{-3x}}{(1+e^{-3x})^2}\mathrm{d}x&=\displaystyle\int^{+\infty}_0\cfrac{xe^{3x}}{(1+e^{3x})^2}\mathrm{d}x=-\cfrac{1}{3}\displaystyle\int^{+\infty}_0x\mathrm{d}\left(\cfrac{1}{1+e^{3x}}\right)\\ &=-\cfrac{xe^{3x}}{1+e^{3x}}\biggm\vert^{+\infty}_0+\cfrac{1}{3}\displaystyle\int^{+\infty}_0\cfrac{1}{1+e^{3x}}\mathrm{d}x\\ &=\cfrac{1}{3}\displaystyle\int^{+\infty}_0\cfrac{e^{3x}}{e^{3x}(1+e^{3x})}\mathrm{d}x\\ &=\cfrac{1}{9}\ln\cfrac{e^{3x}}{e^{3x}+1}\biggm\vert^{+\infty}_0=\cfrac{1}{9}\ln2. \end{aligned} ∫0+∞(1+e−3x)2xe−3xdx=∫0+∞(1+e3x)2xe3xdx=−31∫0+∞xd(1+e3x1)=−1+e3xxe3x∣∣∣∣0+∞+31∫0+∞1+e3x1dx=31∫0+∞e3x(1+e3x)e3xdx=91lne3x+1e3x∣∣∣∣0+∞=91ln2.
(这道题主要利用了分部积分法求解)
解 令 t = tan x 2 t=\tan\cfrac{x}{2} t=tan2x,则
∫ d x 2 + cos x = ∫ 1 2 + 1 − t 2 1 + t 2 ⋅ 2 1 + t 2 d t = ∫ 2 3 + t 2 d t = 2 3 ∫ 1 1 + ( t 3 ) 2 d t = 2 3 arctan t 3 + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{2+\cos x}&=\displaystyle\int\cfrac{1}{2+\cfrac{1-t^2}{1+t^2}}\cdot\cfrac{2}{1+t^2}\mathrm{d}t=\displaystyle\int\cfrac{2}{3+t^2}\mathrm{d}t\\ &=\cfrac{2}{3}\displaystyle\int\cfrac{1}{1+\left(\cfrac{t}{\sqrt{3}}\right)^2}\mathrm{d}t=\cfrac{2}{\sqrt{3}}\arctan\cfrac{t}{\sqrt{3}}+C. \end{aligned} ∫2+cosxdx=∫2+1+t21−t21⋅1+t22dt=∫3+t22dt=32∫1+(3t)21dt=32arctan3t+C.
其中 t = tan x 2 t=\tan\cfrac{x}{2} t=tan2x。(这道题主要利用了万能公式求解)
解 令 t = x + 2 t=\sqrt{x+2} t=x+2,则
∫ d x x + x + 2 = ∫ 2 t t 2 + t − 2 d t = 2 3 ( ∫ 2 t + 2 d t + ∫ 1 t − 1 d t ) = 2 3 ln ∣ ( t + 2 ) 2 ( t − 1 ) ∣ + C = 2 3 ln ∣ ( x + 2 + 2 ) 2 ( x + 2 − 1 ) ∣ + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{x+2}}&=\displaystyle\int\cfrac{2t}{t^2+t-2}\mathrm{d}t=\cfrac{2}{3}\left(\displaystyle\int\cfrac{2}{t+2}\mathrm{d}t+\displaystyle\int\cfrac{1}{t-1}\mathrm{d}t\right)\\ &=\cfrac{2}{3}\ln|(t+2)^2(t-1)|+C\\ &=\cfrac{2}{3}\ln|(\sqrt{x+2}+2)^2(\sqrt{x+2}-1)|+C. \end{aligned} ∫x+x+2dx=∫t2+t−22tdt=32(∫t+22dt+∫t−11dt)=32ln∣(t+2)2(t−1)∣+C=32ln∣(x+2+2)2(x+2−1)∣+C.
(这道题主要利用了换元积分法求解)
解
∫ 0 2 [ ( x − 1 ) 3 + 2 x ] 1 − cos 2 n x d x = x − 1 = t ∫ − 1 1 ( t 3 + 2 t + 2 ) 1 − cos 2 π t d t = 4 ∫ 0 1 1 − cos 2 π t d t = 4 2 ∫ 0 1 sin π t d t = 8 2 π . \begin{aligned} \displaystyle\int^2_0[(x-1)^3+2x]\sqrt{1-\cos2nx}\mathrm{d}x&\xlongequal{x-1=t}\displaystyle\int^1_{-1}(t^3+2t+2)\sqrt{1-\cos2\pi t}\mathrm{d}t\\ &=4\displaystyle\int^1_0\sqrt{1-\cos2\pi t}\mathrm{d}t=4\sqrt{2}\displaystyle\int^1_0\sin\pi t\mathrm{d}t=\cfrac{8\sqrt{2}}{\pi}. \end{aligned} ∫02[(x−1)3+2x]1−cos2nxdxx−1=t∫−11(t3+2t+2)1−cos2πtdt=4∫011−cos2πtdt=42∫01sinπtdt=π82.
(这道题主要利用了积分函数的对称性求解)
解 记 I = ∫ 0 + ∞ 1 ( x 2 + 1 ) ( 1 + x 5 ) d x I=\displaystyle\int^{+\infty}_0\cfrac{1}{(x^2+1)(1+x^5)}\mathrm{d}x I=∫0+∞(x2+1)(1+x5)1dx,令 x = tan t x=\tan t x=tant,则 I = ∫ 0 π 2 cos 5 t cos 5 t + sin 5 t d t I=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos^5t}{\cos^5t+\sin^5t}\mathrm{d}t I=∫02πcos5t+sin5tcos5tdt,又因 I = ∫ 0 π 2 cos 5 t cos 5 t + sin 5 t d t = t = π 2 − u ∫ 0 π 2 sin 5 t cos 5 t + sin 5 t d t I=\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\cos^5t}{\cos^5t+\sin^5t}\mathrm{d}t\xlongequal{t=\cfrac{\pi}{2}-u}\displaystyle\int^{\frac{\pi}{2}}_0\cfrac{\sin^5t}{\cos^5t+\sin^5t}\mathrm{d}t I=∫02πcos5t+sin5tcos5tdtt=2π−u∫02πcos5t+sin5tsin5tdt,两式相加,得 I = π 4 I=\cfrac{\pi}{4} I=4π。(这道题主要利用了换元积分法求解)
解
∫ x + sin x 1 + cos x d x = ∫ x 1 + cos x d x + ∫ sin x 1 + cos x d x = ∫ x 1 + cos x d x + x sin x 1 + cos x − ∫ x d ( sin x 1 + cos x ) = ∫ x 1 + cos x d x + x sin x 1 + cos x − ∫ x 1 + cos x d x = x sin x 1 + cos x + C . \begin{aligned} \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\displaystyle\int\cfrac{\sin x}{1+\cos x}\mathrm{d}x\\ &=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\cfrac{x\sin x}{1+\cos x}-\displaystyle\int x\mathrm{d}\left(\cfrac{\sin x}{1+\cos x}\right)\\ &=\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x+\cfrac{x\sin x}{1+\cos x}-\displaystyle\int\cfrac{x}{1+\cos x}\mathrm{d}x\\ &=\cfrac{x\sin x}{1+\cos x}+C. \end{aligned} ∫1+cosxx+sinxdx=∫1+cosxxdx+∫1+cosxsinxdx=∫1+cosxxdx+1+cosxxsinx−∫xd(1+cosxsinx)=∫1+cosxxdx+1+cosxxsinx−∫1+cosxxdx=1+cosxxsinx+C.
(这道题主要利用了分部积分法求解)
解 作变量代换: e x = u e^x=u ex=u,则 I = ∫ 1 2 ln u u + 1 d u + ∫ 2 3 ln u u − 1 d u I=\displaystyle\int^2_1\cfrac{\ln u}{u+1}\mathrm{d}u+\displaystyle\int^3_2\cfrac{\ln u}{u-1}\mathrm{d}u I=∫12u+1lnudu+∫23u−1lnudu,对后一积分作代换: u − 1 = t u-1=t u−1=t,再分部积分,有
I 2 = ∫ 2 3 ln u u − 1 d u = ∫ 1 2 ln ( t + 1 ) t d t = ln t ln ( t + 1 ) ∣ 1 2 − ∫ 1 2 ln t t + 1 d t = ln 2 ln 3 − I 1 . \begin{aligned} I_2&=\displaystyle\int^3_2\cfrac{\ln u}{u-1}\mathrm{d}u=\displaystyle\int^2_1\cfrac{\ln(t+1)}{t}\mathrm{d}t\\ &=\ln t\ln(t+1)\biggm\vert^2_1-\displaystyle\int^2_1\cfrac{\ln t}{t+1}\mathrm{d}t\\ &=\ln2\ln3-I_1. \end{aligned} I2=∫23u−1lnudu=∫12tln(t+1)dt=lntln(t+1)∣∣∣∣12−∫12t+1lntdt=ln2ln3−I1.
所以 I = I 1 + I 2 = ln 2 ln 3 I=I_1+I_2=\ln2\ln3 I=I1+I2=ln2ln3。(这道题主要利用了分部积分法求解)
解
a n = ∫ 0 1 x n 1 − x 2 d x = x = sin t ∫ 0 π 2 sin n t ⋅ cos 2 t d t = ∫ 0 π 2 sin n t ( 1 − sin 2 t ) d t = b n − b n + 2 . \begin{aligned} a_n&=\displaystyle\int^1_0x^n\sqrt{1-x^2}\mathrm{d}x\xlongequal{x=\sin t}\displaystyle\int^{\frac{\pi}{2}}_0\sin^nt\cdot\cos^2t\mathrm{d}t\\ &=\displaystyle\int^{\frac{\pi}{2}}_0\sin^nt(1-\sin^2t)\mathrm{d}t=b_n-b_{n+2}. \end{aligned} an=∫01xn1−x2dxx=sint∫02πsinnt⋅cos2tdt=∫02πsinnt(1−sin2t)dt=bn−bn+2.
又 b n + 2 = n + 1 n + 2 b n b_{n+2}=\cfrac{n+1}{n+2}b_n bn+2=n+2n+1bn,则 lim n → ∞ n a n b n = lim n → ∞ n ( 1 − n + 1 n + 2 ) = lim n → ∞ n n + 2 = 1 \lim\limits_{n\to\infty}\cfrac{na_n}{b_n}=\lim\limits_{n\to\infty}n\left(1-\cfrac{n+1}{n+2}\right)=\lim\limits_{n\to\infty}\cfrac{n}{n+2}=1 n→∞limbnnan=n→∞limn(1−n+2n+1)=n→∞limn+2n=1。故选 ( A ) (A) (A)。(这道题主要利用了递推公式求解)
解
a n = 3 2 n ∫ 0 n n + 1 1 + x n d ( 1 + x n ) = 3 2 n ⋅ 2 3 ( 1 + x n ) 3 2 ∣ 0 n n + 1 = 1 n [ 1 + 1 ( 1 + 1 n ) n ] 3 2 − 1 n . \begin{aligned} a_n&=\cfrac{3}{2n}\displaystyle\int^{\frac{n}{n+1}}_0\sqrt{1+x^n}\mathrm{d}(1+x^n)\\ &=\cfrac{3}{2n}\cdot\cfrac{2}{3}(1+x^n)^{\frac{3}{2}}\biggm\vert^{\frac{n}{n+1}}_0=\cfrac{1}{n}\left[1+\cfrac{1}{\left(1+\cfrac{1}{n}\right)^n}\right]^{\frac{3}{2}}-\cfrac{1}{n}. \end{aligned} an=2n3∫0n+1n1+xnd(1+xn)=2n3⋅32(1+xn)23∣∣∣∣0n+1n=n1⎣⎢⎢⎢⎢⎡1+(1+n1)n1⎦⎥⎥⎥⎥⎤23−n1.
则 lim n → ∞ n a n = lim n → ∞ [ ( 1 + 1 ( 1 + 1 n ) n ) 3 2 − 1 ] = ( 1 + e − 1 ) 3 2 − 1 \lim\limits_{n\to\infty}na_n=\lim\limits_{n\to\infty}\left[\left(1+\cfrac{1}{\left(1+\cfrac{1}{n}\right)^n}\right)^{\frac{3}{2}}-1\right]=(1+e^{-1})^{\frac{3}{2}}-1 n→∞limnan=n→∞lim⎣⎢⎢⎢⎢⎢⎡⎝⎜⎜⎜⎜⎛1+(1+n1)n1⎠⎟⎟⎟⎟⎞23−1⎦⎥⎥⎥⎥⎥⎤=(1+e−1)23−1。(这道题主要利用了无穷小代换求解)
解 I = lim x → 0 [ f ( x ) g ( x ) ⋅ 1 ( 1 + x ) ( 1 + x ) 1 x + ∫ 0 2 x cos t 2 d t x ] I=\lim\limits_{x\to0}\left[\cfrac{f(x)}{g(x)}\cdot\cfrac{1}{(1+x)(1+x)^{\frac{1}{x}}}+\cfrac{\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{x}\right] I=x→0lim⎣⎢⎢⎡g(x)f(x)⋅(1+x)(1+x)x11+x∫02xcost2dt⎦⎥⎥⎤,其中, lim x → 0 − g ( x ) = lim x → 0 − ( x + 1 2 ) = 1 2 , lim x → 0 + g ( x ) = lim x → 0 + sin x 2 2 x 2 = 1 2 \lim\limits_{x\to0^-}g(x)=\lim\limits_{x\to0^-}\left(x+\cfrac{1}{2}\right)=\cfrac{1}{2},\lim\limits_{x\to0^+}g(x)=\lim\limits_{x\to0^+}\cfrac{\sin\cfrac{x}{2}}{2\cfrac{x}{2}}=\cfrac{1}{2} x→0−limg(x)=x→0−lim(x+21)=21,x→0+limg(x)=x→0+lim22xsin2x=21,故 lim x → 0 g ( x ) = 1 2 \lim\limits_{x\to0}g(x)=\cfrac{1}{2} x→0limg(x)=21,又 f ( x ) f(x) f(x)在 x = 0 x=0 x=0处可导,必连续,即 lim x → 0 f ( x ) = f ( 0 ) \lim\limits_{x\to0}f(x)=f(0) x→0limf(x)=f(0)。故 lim x → 0 f ( x ) g ( x ) = lim x → 0 f ( x ) lim x → 0 g ( x ) = f ( 0 ) 1 2 = 2 f ( 0 ) \lim\limits_{x\to0}\cfrac{f(x)}{g(x)}=\cfrac{\lim\limits_{x\to0}f(x)}{\lim\limits_{x\to0}g(x)}=\cfrac{f(0)}{\cfrac{1}{2}}=2f(0) x→0limg(x)f(x)=x→0limg(x)x→0limf(x)=21f(0)=2f(0)。
而 lim x → 0 ( 1 + x ) ( 1 + x ) 1 x = e , lim x → 0 ∫ 0 2 x cos t 2 d t x = lim x → 0 2 cos ( 2 x ) 2 = 2 \lim\limits_{x\to0}(1+x)(1+x)^{\frac{1}{x}}=e,\lim\limits_{x\to0}\cfrac{\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{x}=\lim\limits_{x\to0}2\cos(2x)^2=2 x→0lim(1+x)(1+x)x1=e,x→0limx∫02xcost2dt=x→0lim2cos(2x)2=2,于是 I = lim x → 0 x f ( x ) ( 1 + x ) − x + 1 x + g ( x ) ∫ 0 2 x cos t 2 d t x g ( x ) = 2 e − 1 f ( 0 ) + 2 I=\lim\limits_{x\to0}\cfrac{xf(x)(1+x)^{-\frac{x+1}{x}}+g(x)\displaystyle\int^{2x}_0\cos t^2\mathrm{d}t}{xg(x)}=2e^{-1}f(0)+2 I=x→0limxg(x)xf(x)(1+x)−xx+1+g(x)∫02xcost2dt=2e−1f(0)+2。(这道题主要利用了拆分分式求解)
解 由分部积分法可得
I n = x ( x 2 − 1 ) n ∣ − 1 1 − 2 n ∫ − 1 1 x 2 ( x 2 − 1 ) n − 1 d x = − 2 n ∫ − 1 1 ( x 2 − 1 ) n d x − 2 n ∫ − 1 1 ( x 2 − 1 ) n − 1 d x = − 2 n I n − 2 n I n − 1 . \begin{aligned} I_n&=x(x^2-1)^n\biggm\vert^1_{-1}-2n\displaystyle\int^1_{-1}x^2(x^2-1)^{n-1}\mathrm{d}x\\ &=-2n\displaystyle\int^1_{-1}(x^2-1)^n\mathrm{d}x-2n\displaystyle\int^1_{-1}(x^2-1)^{n-1}\mathrm{d}x\\ &=-2nI_n-2nI_{n-1}. \end{aligned} In=x(x2−1)n∣∣∣∣−11−2n∫−11x2(x2−1)n−1dx=−2n∫−11(x2−1)ndx−2n∫−11(x2−1)n−1dx=−2nIn−2nIn−1.
故 I n = − 2 n 2 n + 1 I n − 1 I_n=-\cfrac{2n}{2n+1}I_{n-1} In=−2n+12nIn−1。
递推得 I n − 1 = − 2 ( n − 1 ) 2 n − 1 I n − 2 , I n − 2 = − 2 ( n − 2 ) 2 n − 3 I n − 3 , ⋯ , I 2 = − 4 5 I 1 I_{n-1}=-\cfrac{2(n-1)}{2n-1}I_{n-2},I_{n-2}=-\cfrac{2(n-2)}{2n-3}I_{n-3},\cdots,I_2=-\cfrac{4}{5}I_1 In−1=−2n−12(n−1)In−2,In−2=−2n−32(n−2)In−3,⋯,I2=−54I1,又 I 1 = ∫ − 1 1 ( x 2 − 1 ) d x = − 4 3 I_1=\displaystyle\int^1_{-1}(x^2-1)\mathrm{d}x=-\cfrac{4}{3} I1=∫−11(x2−1)dx=−34,所以 I n = ( − 1 ) n 2 2 n + 1 ( n ! ) 2 ( 2 n + 1 ) ! I_n=(-1)^n\cfrac{2^{2n+1}(n!)^2}{(2n+1)!} In=(−1)n(2n+1)!22n+1(n!)2。(这道题主要利用了递推公式求解)
解 令 ln 1 x = t \ln\cfrac{1}{x}=t lnx1=t,则 x = e − t , d x = − e − t d t x=e^{-t},\mathrm{d}x=-e^{-t}\mathrm{d}t x=e−t,dx=−e−tdt。
∫ e − 2 n π 1 ∣ [ cos ( ln 1 x ) ] ′ ∣ ln 1 x d x = ∫ 0 2 n π ∣ d ( cos t ) d t ⋅ d t d x ∣ t e − t d t = ∫ 0 2 n π ∣ e t ⋅ sin t ∣ t e − t d t = ∫ 0 2 n π ∣ sin t ∣ t d t = ∑ k = 1 2 n ∫ ( k − 1 ) π k π ( − 1 ) k − 1 t sin t d t = ∑ k = 1 2 n ( − 1 ) k − 1 ( − t cos t + sin t ) ∣ ( k − 1 ) π k π = ∑ k = 1 2 n ( − 1 ) k − 1 [ − k π ( − 1 ) k + ( k − 1 ) π ( − 1 ) k − 1 ] = ∑ k = 1 2 n ( 2 k − 1 ) π = 4 n 2 π . \begin{aligned} \displaystyle\int^1_{e^{-2n\pi}}\left|\left[\cos\left(\ln\cfrac{1}{x}\right)\right]'\right|\ln\cfrac{1}{x}\mathrm{d}x&=\displaystyle\int^{2n\pi}_0\left|\cfrac{\mathrm{d}(\cos t)}{\mathrm{d}t}\cdot\cfrac{\mathrm{d}t}{\mathrm{d}x}\right|te^{-t}\mathrm{d}t=\displaystyle\int^{2n\pi}_0|e^t\cdot\sin t|te^{-t}\mathrm{d}t\\ &=\displaystyle\int^{2n\pi}_0|\sin t|t\mathrm{d}t=\sum\limits_{k=1}^{2n}\displaystyle\int^{k\pi}_{(k-1)\pi}(-1)^{k-1}t\sin t\mathrm{d}t\\ &=\sum\limits_{k=1}^{2n}(-1)^{k-1}(-t\cos t+\sin t)\biggm\vert^{k\pi}_{(k-1)\pi}\\ &=\sum\limits_{k=1}^{2n}(-1)^{k-1}[-k\pi(-1)^k+(k-1)\pi(-1)^{k-1}]\\ &=\sum\limits_{k=1}^{2n}(2k-1)\pi=4n^2\pi. \end{aligned} ∫e−2nπ1∣∣∣∣∣[cos(lnx1)]′∣∣∣∣∣lnx1dx=∫02nπ∣∣∣∣∣dtd(cost)⋅dxdt∣∣∣∣∣te−tdt=∫02nπ∣et⋅sint∣te−tdt=∫02nπ∣sint∣tdt=k=1∑2n∫(k−1)πkπ(−1)k−1tsintdt=k=1∑2n(−1)k−1(−tcost+sint)∣∣∣∣(k−1)πkπ=k=1∑2n(−1)k−1[−kπ(−1)k+(k−1)π(−1)k−1]=k=1∑2n(2k−1)π=4n2π.
(这道题主要利用了分段函数求解)
解 化为二次积分并交换积分次序,有
∫ 0 1 x b − x a ln x d x = ∫ 0 1 ( ∫ a b x y d y ) d x = ∫ b a ( ∫ 0 1 x y d x ) d y = ∫ a b 1 y + 1 d y = ln b + 1 a + 1 . \begin{aligned} \displaystyle\int^1_0\cfrac{x^b-x^a}{\ln x}\mathrm{d}x&=\displaystyle\int^1_0\left(\displaystyle\int^b_ax^y\mathrm{d}y\right)\mathrm{d}x=\displaystyle\int^a_b\left(\displaystyle\int^1_0x^y\mathrm{d}x\right)\mathrm{d}y\\ &=\displaystyle\int^b_a\cfrac{1}{y+1}\mathrm{d}y=\ln\cfrac{b+1}{a+1}. \end{aligned} ∫01lnxxb−xadx=∫01(∫abxydy)dx=∫ba(∫01xydx)dy=∫aby+11dy=lna+1b+1.
(这道题主要利用了换序积分求解)
解 令 x = 1 t x=\cfrac{1}{t} x=t1,则
∫ 0 + ∞ 1 ( 1 + x 2 ) ( 1 + x α ) d x = ∫ 0 + ∞ t α ( 1 + t 2 ) ( 1 + t α ) d t = ∫ 0 + ∞ x α ( 1 + x 2 ) ( 1 + x α ) d x = 1 2 ∫ 0 + ∞ 1 + x α ( 1 + x 2 ) ( 1 + x α ) d x = 1 2 ∫ 0 + ∞ 1 1 + x 2 d x = 1 2 arctan x ∣ 0 + ∞ = π 4 . \begin{aligned} \displaystyle\int^{+\infty}_0\cfrac{1}{(1+x^2)(1+x^\alpha)}\mathrm{d}x&=\displaystyle\int^{+\infty}_0\cfrac{t^\alpha}{(1+t^2)(1+t^\alpha)}\mathrm{d}t=\displaystyle\int^{+\infty}_0\cfrac{x^\alpha}{(1+x^2)(1+x^\alpha)}\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int^{+\infty}_0\cfrac{1+x^\alpha}{(1+x^2)(1+x^\alpha)}\mathrm{d}x=\cfrac{1}{2}\displaystyle\int^{+\infty}_0\cfrac{1}{1+x^2}\mathrm{d}x\\ &=\cfrac{1}{2}\arctan x\biggm\vert^{+\infty}_0=\cfrac{\pi}{4}. \end{aligned} ∫0+∞(1+x2)(1+xα)1dx=∫0+∞(1+t2)(1+tα)tαdt=∫0+∞(1+x2)(1+xα)xαdx=21∫0+∞(1+x2)(1+xα)1+xαdx=21∫0+∞1+x21dx=21arctanx∣∣∣∣0+∞=4π.
(这道题主要利用了换元积分法求解)
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。