(新建的群1039047324,欢迎对技术感兴趣的朋友加入,群内可以接私活,聊技术,分享工作中容易踩的坑,以及如何避免踩坑,分享最新架构视频)
消息队列是分布式应用间交换信息的重要组件,消息队列可驻留在内存或磁盘上, 队列可以存储消息直到它们被应用程序读走。
通过消息队列,应用程序可以在不知道彼此位置的情况下独立处理消息,或者在处理消息前不需要等待接收此消息。
所以消息队列可以解决应用解耦、异步消息、流量削锋等问题,是实现高性能、高可用、可伸缩和最终一致性架构中不可以或缺的一环。
现在比较常见的消息队列产品主要有ActiveMQ、RabbitMQ、ZeroMQ、Kafka、RocketMQ等。
本文重点以RabbitMQ为例。
1.为什么要使用消息队列
六个字:解耦、异步、削峰
(1)解耦
传统模式:
传统模式的缺点:
中间件模式:
中间件模式的优点:
(2)异步
传统模式:
传统模式的缺点:
中间件模式:
中间件模式的优点:
(3)削峰
传统模式:
传统模式的缺点:
中间件模式的优点:
2.使用了消息队列会有什么缺点
主要在于系统的可用性、复杂性、一致性问题,引入消息队列后,需要考虑MQ的可用性,万一MQ崩溃了岂不是要爆炸?而且复杂性明显提高了,需要考虑一些消息队列的常见问题和解决方案,还有就是一致性问题,一条消息由多个消费者消费,万一有一个消费者消费失败了,就会导致数据不一致。
3.消息队列如何选型
注: - 表示尚未查找到准确数据
综合上面的材料得出以下两点:
(1)中小型软件公司,建议选RabbitMQ.一方面,erlang语言天生具备高并发的特性,而且他的管理界面用起来十分方便。
正所谓,成也萧何,败也萧何!他的弊端也在这里,虽然RabbitMQ是开源的,然而国内有几个能定制化开发erlang的程序员呢?所幸,RabbitMQ的社区十分活跃,可以解决开发过程中遇到的bug,这点对于中小型公司来说十分重要。不考虑rocketmq和kafka的原因是,一方面中小型软件公司不如互联网公司,数据量没那么大,选消息中间件,应首选功能比较完备的,所以kafka排除。不考虑rocketmq的原因是,rocketmq是阿里出品,如果阿里放弃维护rocketmq,中小型公司一般抽不出人来进行rocketmq的定制化开发,因此不推荐。
(2)大型软件公司,根据具体使用在rocketMq和kafka之间二选一。一方面,大型软件公司,具备足够的资金搭建分布式环境,也具备足够大的数据量。针对rocketMQ,大型软件公司也可以抽出人手对rocketMQ进行定制化开发,毕竟国内有能力改JAVA源码的人,还是相当多的。至于kafka,根据业务场景选择,如果有日志采集功能,肯定是首选kafka了。具体该选哪个,看使用场景。
4、如何保证消息队列的高可用
(一)RabbitMQ
RabbitMQ有三种模式:单机模式,普通集群模式,镜像集群模式
(1)单机模式
单机模式平常使用在开发或者本地测试场景,一般就是测试是不是能够正确的处理消息,生产上基本没人去用单机模式,风险很大。
(2)普通集群模式
普通集群模式就是启动多个RabbitMQ实例。在你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据。在消费的时候完了,上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。
这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个queue所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。
而且如果那个放queue的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让RabbitMQ落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个queue拉取数据。
这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。
(3)镜像集群模式
镜像集群模式是所谓的RabbitMQ的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。
优点在于你任何一个实例宕机了,没事儿,别的实例都可以用。缺点在于性能开销太大和扩展性很低,同步所有实例,这会导致网络带宽和压力很重,而且扩展性很低,每增加一个实例都会去包含已有的queue的所有数据,并没有办法线性扩展queue。
开启镜像集群模式可以去RabbitMQ的管理控制台去增加一个策略,指定要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
(二)Kafka
Kafka天生就是一个分布式的消息队列,它可以由多个broker组成,每个broker是一个节点;你创建一个topic,这个topic可以划分为多个partition,每个partition可以存在于不同的broker上,每个partition就放一部分数据。
kafka 0.8以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。
kafka 0.8以后,提供了HA机制,就是replica副本机制。kafka会均匀的将一个partition的所有replica分布在不同的机器上,来提高容错性。每个partition的数据都会同步到吉他机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都去leader,其他replica就是follower,leader会同步数据给follower。当leader挂了会自动去找replica,然后会再选举一个leader出来,这样就具有高可用性了。
写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)
消费的时候,只会从leader去读,但是只有一个消息已经被所有follower都同步成功返回ack的时候,这个消息才会被消费者读到。
5、如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性
其实消息重复消费的主要原因在于回馈机制(RabbitMQ是ack,Kafka是offset),在某些场景中我们采用的回馈机制不同,原因也不同,例如消费者消费完消息后回复ack, 但是刚消费完还没来得及提交系统就重启了,这时候上来就pull消息的时候由于没有提交ack或者offset,消费的还是上条消息。
那么如何怎么来保证消息消费的幂等性呢?实际上我们只要保证多条相同的数据过来的时候只处理一条或者说多条处理和处理一条造成的结果相同即可,但是具体怎么做要根据业务需求来定,例如入库消息,先查一下消息是否已经入库啊或者说搞个唯一约束啊什么的,还有一些是天生保证幂等性就根本不用去管,例如redis就是天然幂等性。
还有一个问题,消费者消费消息的时候在某些场景下要放过消费不了的消息,遇到消费不了的消息通过日志记录一下或者搞个什么措施以后再来处理,但是一定要放过消息,因为在某些场景下例如spring-rabbitmq的默认回馈策略是出现异常就没有提交ack,导致了一直在重发那条消费异常的消息,而且一直还消费不了,这就尴尬了,后果你会懂的。
6、如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题
用 MQ 有个基本原则,就是数据不能多一条,也不能少一条,不能多,就是前面说的重复消费和幂等性问题。不能少,就是说这数据别搞丢了。那这个问题你必须得考虑一下。数据的丢失问题,可能出现在生产者、MQ、消费者中。
1) 生产者弄丢了数据
生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。
此时可以选择用 RabbitMQ 提供的事务功能,就是生产者发送数据之前开启 RabbitMQ 事务channel.txSelect
,然后发送消息,如果消息没有成功被 RabbitMQ 接收到,那么生产者会收到异常报错,此时就可以回滚事务channel.txRollback
,然后重试发送消息;如果收到了消息,那么可以提交事务channel.txCommit
。
但是问题是,RabbitMQ 事务机制(同步)一搞,基本上吞吐量会下来,因为太耗性能。
2)RabbitMQ 弄丢了数据
就是 RabbitMQ 自己弄丢了数据,这个你必须开启 RabbitMQ 的持久化,就是消息写入之后会持久化到磁盘,哪怕是 RabbitMQ 自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,RabbitMQ 还没持久化,自己就挂了,可能导致少量数据丢失,但是这个概率较小。
设置持久化有两个步骤:
deliveryMode
设置为 2必须要同时设置这两个持久化才行,RabbitMQ 哪怕是挂了,再次重启,也会从磁盘上重启恢复 queue,恢复这个 queue 里的数据。
持久化可以跟生产者那边的confirm
机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者ack
了,所以哪怕是在持久化到磁盘之前,RabbitMQ 挂了,数据丢了,生产者收不到ack
,你也是可以自己重发的。
注意,哪怕是你给 RabbitMQ 开启了持久化机制,也有一种可能,就是这个消息写到了 RabbitMQ 中,但是还没来得及持久化到磁盘上,结果不巧,此时 RabbitMQ 挂了,就会导致内存里的一点点数据丢失。
所以一般来说,如果你要确保说写 RabbitMQ 的消息别丢,可以开启confirm
模式,在生产者那里设置开启confirm
模式之后,你每次写的消息都会分配一个唯一的 id,然后如果写入了 RabbitMQ 中,RabbitMQ 会给你回传一个ack
消息,告诉你说这个消息 ok 了。如果 RabbitMQ 没能处理这个消息,会回调你一个nack
接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息 id 的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。
事务机制和cnofirm
机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是confirm
机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息RabbitMQ 接收了之后会异步回调你一个接口通知你这个消息接收到了。
所以一般在生产者这块避免数据丢失,都是用confirm
机制的。
3)消费端弄丢了数据
RabbitMQ 如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,RabbitMQ 认为你都消费了,这数据就丢了。
这个时候得用 RabbitMQ 提供的ack
机制,简单来说,就是你关闭 RabbitMQ 的自动ack
,可以通过一个 api 来调用就行,然后每次你自己代码里确保处理完的时候,再在程序里ack
一把。这样的话,如果你还没处理完,不就没有ack
?那 RabbitMQ 就认为你还没处理完,这个时候 RabbitMQ 会把这个消费分配给别的 consumer 去处理,消息是不会丢的。
7.如何保证消息的顺序性
因为在某些情况下我们扔进MQ中的消息是要严格保证顺序的,尤其涉及到订单什么的业务需求,消费的时候也是要严格保证顺序,不然会出大问题的。
先看看顺序会错乱的两个场景:
rabbitmq:一个queue,多个consumer,这不明显乱了
kafka:一个topic,一个partition,一个consumer,内部多线程,这不也明显乱了
1)rabbitmq:拆分成多个queue,每个queue一个consumer,就是多一些queue而已,确实是麻烦点;或者就一个queue但是对应一个consumer,然后这个consumer内部用内存队列做排队,然后分发给底层不同的worker来处理
8、如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时怎么解决?
消息积压:如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来.
一般这个时候,只能操作临时紧急扩容了,具体操作步骤和思路如下:
先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉。
新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量。
然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue。
接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据。
这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据。
等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息。
消息丢失:假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在mq里,而是大量的数据会直接搞丢。
这个情况下,就不是说要增加consumer消费积压的消息,因为实际上没啥积压,而是丢了大量的消息。我们可以采取一个方案,就是批量重导,这个我们之前线上也有类似的场景干过。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。
这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入mq里面去,把白天丢的数据给他补回来。也只能是这样了。
假设1万个订单积压在mq里面,没有处理,其中1000个订单都丢了,你只能手动写程序把那1000个订单给查出来,手动发到mq里去再补一次
9、RabbitMQ 有哪些重要的组件
ConnectionFactory(连接管理器):应用程序与Rabbit之间建立连接的管理器,程序代码中使用;
Channel(信道):消息推送使用的通道;
Exchange(交换器):用于接受、分配消息;
Queue(队列):用于存储生产者的消息;
RoutingKey(路由键):用于把生成者的数据分配到交换器上;
BindingKey(绑定键):用于把交换器的消息绑定到队列上;
10、RabbitMQ 有几种广播类型?(交换器类型)
fanout: 所有bind到此exchange的queue都可以接收消息(纯广播,绑定到RabbitMQ的接受者都能收到消息);
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息;
topic: 是direct exchange的通配符模式,所有符合routingKey(可以是一个表达式)的routingKey所bind的queue可以接收消息;
headers:很少使用,性能差,消息头交换机使用消息头的属性进行消息路由。
11、Kafka 可以脱离 zookeeper 单独使用吗?为什么?
kafka 不能脱离 zookeeper 单独使用,因为 kafka 使用 zookeeper 管理和协调 kafka 的节点服务器。