- 大模型与智能体:螺旋共生,绘就智能新蓝图
东锋17
人工智能大模型智能体人工智能
大模型与智能体:螺旋共生,绘就智能新蓝图在人工智能的前沿领域,大模型与智能体宛如两颗璀璨的星辰,以一种精妙的螺旋共生关系,重塑着智能世界的格局,深刻影响着我们生活与工作的方方面面。大模型:构筑智能大厦的基石大语言模型,像广为人知的GPT-4、通义千问等,凭借在海量数据中深度学习的锤炼,展现出卓越的语言理解与生成天赋。它们就像知识渊博的学者,能熟练应对各类自然语言任务。无论是洋洋洒洒的文章创作,还是
- MySQL排序大揭秘:从零开始掌握数据排序的魔法
码农技术栈
MySQLmysqlandroidadb开发语言jvm后端性能优化
你是否好奇过数据库如何瞬间将杂乱数据变成有序列表?本文将带你探索MySQL排序的奥秘,揭开背后的技术原理!一、为什么排序如此重要?在我们日常生活中,排序无处不在:电商网站按价格从低到高展示商品社交媒体按时间倒序显示朋友圈学生成绩按分数从高到低排名排序是数据库的核心能力之一,它让海量数据变得有意义且易于理解。想象一下没有排序功能的数据库就像一本没有目录的百科全书!二、MySQL排序基础入门1.最简单
- 数据集全解析:从基础概念到实践应用的完整指南
数据集全解析:从基础概念到实践应用的完整指南一、数据集的本质与核心价值1.1数据集的定义与范畴数据集(Dataset)是按照特定格式组织的一组数据的集合,它可以是结构化数据(如关系型数据库中的表格)、半结构化数据(如JSON、XML文件)或非结构化数据(如图像、文本、音频、视频等)。从表现形式看,数据集可以是一个文件(如CSV、Excel表格)、一个数据库表,也可以是分布式存储的海量数据集合(如H
- 探秘无服务器数据库:Amazon Aurora Serverless 深度解析
春风十里敲代码
serverless数据库云原生
在数字化浪潮下,数据库技术不断革新,无服务器数据库成为备受瞩目的新兴力量。其中,AmazonAuroraServerless凭借独特优势,在云数据库领域大放异彩,为现代应用开发带来全新思路。现代应用追求卓越用户体验,要求快速响应、全球可用,还要能处理海量数据。传统单体应用架构已力不从心,微服务化与无服务器架构兴起。在数据库需求上,应用不再满足于单一模式,而是需要专库专用的数据服务。比如,电商应用中
- HDFS 伪分布模式搭建与使用全攻略(适合初学者 & 开发测试环境)
huihui450
hdfshadoop大数据
HDFS(HadoopDistributedFileSystem)作为Hadoop生态系统的核心组件,广泛应用于海量数据的分布式存储场景。对于开发者而言,伪分布模式提供了一种低成本、高还原度的学习与测试方式。本文将详细介绍如何在本地搭建并使用HDFS的伪分布模式,包括环境准备、配置过程、常用命令及常见问题排查,帮助你快速入门Hadoop分布式文件系统的实践操作。一、什么是伪分布模式?Hadoop有
- 多线程导出excel高并发_表格存储:使用TableStoreWriter进行高并发、高吞吐的数据写入-阿里云开发者社区...
rayyangul
多线程导出excel高并发
概述表格存储(原OTS)的一大特性是能够支撑海量数据的高并发、高吞吐率的写入,特别适合日志数据或物联网场景(例如轨迹追踪或溯源)数据的写入和存储。这些场景的特性是,会在短时间内产生大量的数据需要消化并写入数据库,需要数据库能够提供高并发、高吞吐率的写入性能,需要满足每秒上万行甚至上百万行的写入吞吐率。针对这些场景,我们在存储层做了很多的优化(本篇文章不赘述),同时在SDK接口层也做了一些优化,专门
- Tesla的FSD 架构设计
WSSWWWSSW
智能驾驶汽车人工智能FSD
特斯拉的FSD(完全自动驾驶)架构设计以端到端神经网络为核心,结合专用硬件加速、海量数据训练和持续OTA迭代,形成了一套高度集成的系统。以下从硬件、软件、算法、数据处理和安全机制五个维度展开分析:一、硬件架构:从HW3.0到AI5的算力跃迁HW3.0基础设计采用三星14nm工艺的定制SoC,包含12个Cortex-A72CPU核心、2个NPU(合计73.7TOPS算力)和Mali-G71GPU,支
- Apache SeaTunnel × Hive 深度集成指南:原理、配置与实践
数据库
在大数据处理的复杂生态中,数据的高效流转与整合是实现数据价值的关键。ApacheSeaTunnel作为一款高性能、分布式、易扩展的数据集成框架,能够快速实现海量数据的实时采集、转换和加载;而ApacheHive作为经典的数据仓库工具,为结构化数据的存储、查询和分析提供了坚实的基础。将ApacheSeaTunnel与Hive进行集成,能够充分发挥两者的优势,构建起高效的数据处理链路,满足企业多样化的
- 流量分发的未来:PCDN的潜力
数据库
流量分发的未来:PCDN的潜力在数字化浪潮的推动下,宽带流量的需求持续增长,传统的CDN(内容分发网络)虽然仍是主流,但面对海量数据的分发需求,PCDN(P2P内容分发网络)正展现出巨大的潜力。PCDN通过利用边缘节点的闲置带宽和计算资源,优化流量分发效率,为未来的互联网架构提供了新的可能性。宽带流量的激增对传统CDN提出了更高的要求。视频流媒体、在线游戏、云存储等应用对低延迟、高带宽的需求不断提
- 从0到1:Vue.js与D3.js搭建AI大数据动态看板
一、引言在当今AI和大数据盛行的时代,数据如同企业的“石油”,蕴含着巨大的价值。随着数据量呈指数级增长,如何从海量数据中快速提取有价值的信息,并以直观、易懂的方式呈现出来,成为了数据分析领域的关键挑战。数据看板作为一种强大的数据可视化工具,能够将复杂的数据转化为直观的图表、图形和指标,帮助用户快速理解数据背后的含义,做出更明智的决策。无论是企业的管理层、业务分析师还是数据科学家,都可以通过数据看板
- 大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
在人工智能的浪潮之巅,我们总会惊叹于GPT-4、Llama3.1、Qwen2.5这些顶尖大语言模型(LLM)所展现出的惊人能力。它们似乎无所不知,能写诗、能编程、能进行复杂的逻辑推理。一个自然而然的问题是:它们是如何“学”会这一切的?大多数人会回答:“用海量数据喂出来的。”这个答案只说对了一半。如果你认为只要把互联网上能找到的所有数据(比如15万亿个token)随机打乱,然后“一锅烩”地喂给模型,
- 如何在YashanDB中实现数据趋势预测
数据库
数据趋势预测已成为数据驱动决策中的一个重要方面。在面临海量数据时,如何精确而高效地提取潜在趋势,对于企业的战略规划具有重要意义。YashanDB作为一款高性能的数据库产品,提供多种存储和查询优化功能,使得实现数据趋势预测成为可能。特别是在数据存储结构和多版本并发控制(MVCC)等特性下,趋势预测的场景应用可以得到有效支持。数据分析基础在进行数据趋势预测之前,首先必须了解基础的数据分析过程。Yash
- 如何在YashanDB中实现多级缓存策略
数据库
随着大数据时代的到来,数据存储和访问的效率要求越来越高。数据库技术在面对海量数据、高并发访问时,性能瓶颈逐渐凸显,尤其是响应时间和系统吞吐量成为开发者和DBA关注的重点。为了解决这些问题,缓存策略被引入作为一种有效的解决方案。然而,不同类型的缓存(如内存缓存、磁盘缓存等)之间需要协调工作,以达到最佳性能。在此背景下,YashanDB作为一个云原生数据库,支持多级缓存策略,为数据访问提供了灵活的加速
- 如何在YashanDB数据库中高效处理海量数据
数据库
在现代数据库技术中,海量数据的管理和处理成为了一个普遍存在的挑战。随着数据规模的不断扩大,性能瓶颈、数据一致性问题以及易用性需求等问题日益凸显。这些挑战促使企业寻求更为高效的解决方案,以支撑海量数据的存储、分析与挖掘。YashanDB作为一款专为处理海量数据而设计的数据库,凭借其高可扩展性、高并发性能和高可用性,提供了一系列技术手段以应对这些挑战。本文旨在探讨如何在YashanDB中高效地管理和处
- 从维基百科到知识图谱:用 DSPy、OpenAI 和 TiDB 构建 GraphRAG 的奇妙旅程
步子哥
AGI通用人工智能知识图谱tidb人工智能
在信息爆炸的时代,如何快速从海量数据中提取有用信息,成为了技术发展的重要方向。传统的RAG(Retrieval-AugmentedGeneration)方法虽然在信息检索领域表现出色,但随着需求复杂度的提升,GraphRAG(基于知识图谱的RAG)逐渐成为更优的解决方案。本文将带您一步步了解如何利用DSPy、OpenAI和TiDBVectorDatabase,从维基百科数据构建一个GraphRAG
- ClickHouse【理论篇】02:ClickHouse架构和组件
做一个有趣的人Zz
ClickHouseclickhouse架构
ClickHouse的架构设计深度适配OLAP(在线分析处理)场景,通过列式存储、向量化执行、分布式分片与副本等核心技术,实现了对海量数据的高效分析与实时查询。以下从核心存储引擎、查询处理流程、分布式架构、元数据管理、复制与分片等维度详细解析其内部架构与关键组件。一、核心存储引擎:MergeTree系列ClickHouse的存储引擎是其性能的核心,其中MergeTree系列引擎(如MergeTre
- 摸鱼神器分享:3分钟搞定网页自动下滑,效率翻倍还能快乐摸鱼!✨
铸剑师欧冶子
电子牛马养成计划影刀RPA经验分享笔记数据分析facebook个人开发其他
一、痛点场景:为什么我们需要网页自动化工具?作为一名程序员/数据分析师/运营人员,你是否经常遇到这些令人抓狂的情况?海量数据加载:打开FacebookMessenger等社交平台,上千条消息根本刷不到底!无效操作:按End键只能拉到当前加载处,手动下滑几分钟手都酸了...数据采集困难:想要抓取完整消息记录或页面底部信息,等待时间令人绝望关键词:网页自动化、RPA工具、数据采集、效率提升二、现有解决
- 深入解析C语言位域
第九先生
C/C++系列c语言开发语言
一、位域是什么?为何需要它?位域(BitField)是C语言中一种特殊的结构体成员,允许开发者以比特(bit)为单位精确分配内存空间,而非传统的字节或字。其核心价值在于:节省内存:例如布尔标志(0/1)仅需1比特,而非1字节(8比特),在嵌入式系统或海量数据场景下可显著降低内存占用硬件交互:直接映射硬件寄存器的特定位(如使能位、状态码),替代繁琐的位掩码操作协议解析:精准匹配网络/文件协议的紧凑字
- AI大模型定义与应用概述
水云桐程序员
人工智能ai大模型
AI大模型,也成为基础模型或大规模预训练模型,指的是在海量数据上通过深度学习技术进行预训练的超大型人工智能模型。常见类型大型语言模型:这是目前最主流和成熟的大模型类型。擅长文本生成、文本理解、机器翻译、对话系统、代码生成与解释等。代表案例:GPT系列、通义千问、文心一言、KimiChat等。多模态大模型:擅长同时处理和生成多种模态的信息,如文生图、图生文、图文问答、视频理解、音频生成等。代表案例:
- 《前端开发者必看:IndexedDB海量数据查询提速秘籍》
程序猿阿伟
数据库oracle前端
IndexedDB作为强大的客户端存储方案,虽提供了大容量存储能力,然而当面对海量数据时,查询速度的优化成为亟待解决的难题,这不仅关乎应用性能,更直接影响用户体验。IndexedDB采用异步操作,以事务为核心,通过对象存储空间(ObjectStore)存储数据。其查询依赖于索引机制,索引类似书籍目录,能快速定位数据位置。例如,在一个包含大量用户信息的数据库中,若要查找特定用户,通过为用户ID建立索
- 探秘阿里云Tablestore:大数据存储与查询的神器
云资源服务商
阿里云大数据云计算
一、引言在大数据时代,数据量呈爆炸式增长,数据类型也日益丰富多样,这对数据库技术提出了前所未有的挑战。传统的关系型数据库在应对海量数据存储、高并发读写以及复杂数据分析时,往往显得力不从心,难以满足企业日益增长的业务需求。为了解决这些问题,各种新型数据库技术应运而生,阿里云Tablestore便是其中的佼佼者。阿里云Tablestore是一款构建在阿里云飞天分布式系统之上的分布式NoSQL数据存储服
- LangChain检索器的核心功能与查询逻辑源码级分析(81)
Android 小码蜂
LangChain框架入门langchain人工智能深度学习
LangChain检索器的核心功能与查询逻辑源码级分析I.检索器在LangChain中的定位与作用1.1检索器的核心价值在LangChain框架中,检索器(Retriever)承担着从海量数据中快速定位相关信息的关键角色。其核心价值在于将用户输入与知识库中的内容进行匹配,为语言模型的推理提供上下文支持。例如,在问答系统中,检索器会根据用户提问从文档库中筛选出最相关的段落,避免语言模型因缺乏背景信息
- 为何YashanDB数据库是现代企业数字化转型的选择
数据库
在企业数字化转型的过程中,选择合适的数据库技术是一个重大决策。当前常见的问题是,如何在海量数据环境下实现高效的数据存储与访问、如何保证数据安全性以及如何快速响应业务变更需求?这些问题直接影响企业的运营效率和决策能力,因此选择一款优秀的数据库是企业转型成功的关键。本文将探讨YashanDB数据库的技术优势及其为何成为现代企业数字化转型的不二选择。体系架构的灵活性与可扩展性YashanDB数据库支持多
- 为什么选择YashanDB作为您的数据存储解决方案?
数据库
在现代数据库管理中,如何在保持快速查询响应并确保数据一致性的基础上,有效管理海量数据,成为许多企业面临的挑战。优化查询性能、加速数据处理流程、确保高可用性和数据安全是数据库技术的关键需求。YashanDB作为一种新兴的数据库解决方案,以其灵活的架构和强大的性能优化能力,逐渐被视为满足这一需求的理想选择。领先的体系架构YashanDB的体系架构灵活且高效,支持单机部署、共享集群部署以及分布式集群部署
- 企业如何使用YashanDB实现数据资产最大化?
数据库
在当今数字化时代,企业面临着海量数据的管理与利用挑战,如何优化数据查询速度以提升业务响应效率成为关键问题。查询速度直接影响数据驱动决策的时效性和准确性,进而关系到企业竞争力的提升。本文将基于先进数据库技术,探讨企业如何利用YashanDB的核心架构、存储引擎与优化机制,最大化数据资产的价值。YashanDB的部署架构与灵活应用YashanDB支持三种部署形态:单机部署、分布式集群部署及共享集群部署
- 为什么YashanDB数据库是大数据处理的理想选择?
数据库
在当今大数据时代,如何高效管理和处理海量数据成为了许多企业的首要挑战。针对这一问题,选择合适的数据库系统至关重要。尤其是在大数据场景中,诸如数据存储、数据访问效率和并发控制等技术要求提高,给数据库的选择带来了更高的标准。YashanDB作为一款高性能数据库,以其独特的架构设计与一系列优秀的功能,成为大数据处理的理想选择。高度可扩展的部署架构YashanDB支持多种部署形态,包括单机部署、分布式集群
- 企业如何构建基于YashanDB的数据分析系统
数据库
随着大数据时代的到来,企业面临的一个核心技术问题是如何有效、快速地进行数据分析以指导决策。一个重要的性能瓶颈在于数据库的查询速度和存储结构的设计。尤其在处理海量数据时,如何在保证数据查询性能的同时确保数据的准确性和完整性,这问题显得尤为重要。YashanDB作为一个高性能的数据库系统,通过其独特的体系架构和强大的数据存储及访问机制,为企业构建高效的数据分析系统提供了可靠的技术支持。YashanDB
- Python与自动驾驶仿真平台AirSim:未来驾驶的“练兵场”如何用代码玩转现实?
Echo_Wish
Python!实战!python自动驾驶开发语言
Python与自动驾驶仿真平台AirSim:未来驾驶的“练兵场”如何用代码玩转现实?今天咱们聊聊一个非常火但又特别实用的技术方向——自动驾驶仿真。具体点,就是用Python怎么玩转微软出品的自动驾驶仿真平台AirSim。别看名字叫AirSim,实际上它不仅支持无人机,还对自动驾驶汽车的模拟提供了强大支持。自动驾驶不是科幻,背后需要海量数据、复杂算法和大量实车测试。而现实世界测试成本高、风险大,怎么
- Python爬虫实战:研究urllib 库相关技术
ylfhpy
爬虫项目实战python爬虫开发语言urllib
1.引言1.1研究背景与意义互联网每天产生海量数据,如何高效获取和利用这些数据成为重要研究方向。网页爬虫作为自动获取网络信息的核心技术,在市场调研、舆情分析、学术研究等领域具有广泛应用。Python凭借其简洁语法和丰富库支持,成为爬虫开发的首选语言。1.2相关技术概述Python爬虫技术栈主要包括:标准库:urllib、re、csv等第三方库:Requests、BeautifulSoup、Scra
- MapReduce分布式计算框架:从原理到实战
AI妈妈手把手
mapreduce前端大数据分布式计算python人工智能
大家好!今天我们来聊聊大数据处理领域的一个重要框架——MapReduce。作为Google提出的经典分布式计算模型,MapReduce极大地简化了海量数据的处理流程。无论你是大数据新手还是有一定经验的开发者,这篇文章都会让你对MapReduce有更深入的理解。我们还会通过实际代码示例来展示它的强大功能!一、MapReduce是什么?想象你有一个装满10亿本书的图书馆,现在需要统计所有书中"大数据"
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少