最大流最小割定理证明

最大流最小割定理

 

下面介绍网络流理论中一个最为重要的定理
最大流最小割定理(Maximum Flow, Minimum Cut Theorem):网络的最大流等于最小割
具体的证明分三部分

 

1.任意一个流都小于等于任意一个割

 

这个很好理解 自来水公司随便给你家通点水 构成一个流
恐怖分子随便砍几刀 砍出一个割
由于容量限制 每一根的被砍的水管子流出的水流量都小于管子的容量
每一根被砍的水管的水本来都要到你家的 现在流到外面 加起来得到的流量还是等于原来的流
管子的容量加起来就是割 所以流小于等于割
由于上面的流和割都是任意构造的 所以任意一个流小于任意一个割

 

2.构造出一个流等于一个割

 

当达到最大流时 根据增广路定理
残留网络中s到t已经没有通路了 否则还能继续增广
我们把s能到的的点集设为S 不能到的点集为T
构造出一个割集C[S,T] S到T的边必然满流 否则就能继续增广
这些满流边的流量和就是当前的流即最大流
把这些满流边作为割 就构造出了一个和最大流相等的割

 

3.最大流等于最小割

 

设相等的流和割分别为Fm和Cm
则因为任意一个流小于等于任意一个割
任意F≤Fm=Cm≤任意C
--------------------- 
作者:_Tham 
来源:CSDN 
原文:https://blog.csdn.net/txl199106/article/details/64441994 
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(网络流)