- 情感分析研究综述:方法演化与前沿挑战
next_travel
人工智能机器学习深度学习
文章目录摘要abstract1.引言2.模型方法2.1文本情感分析2.1.1文档级情感分类2.1.2句子级情感分类2.1.3方面级情感分类2.2文本情感分析方法2.2.1基于词典的方法2.2.2基于机器学习的方法2.2.3基于深度学习方法2.3视觉情感分析2.4音频情感分析2.5多模态情感分析2.5.1图文方法2.5.2视听方法2.5.3音频-图像-文本方法3.情感分析的挑战3.1讥讽检测3.2模
- 基于图像处理的裂缝检测与特征提取
机器懒得学习
图像处理计算机视觉人工智能
一、引言裂缝检测是基础设施监测中至关重要的一项任务,尤其是在土木工程和建筑工程领域。随着自动化技术的发展,传统的人工巡检方法逐渐被基于图像分析的自动化检测系统所取代。通过计算机视觉和图像处理技术,能够高效、精确地提取裂缝的几何特征,如长度、宽度、方向、面积等,从而为工程质量评估提供数据支持。本文将详细介绍一段用于裂缝检测与特征提取的Python代码,重点讲解其实现的核心算法与关键步骤,分析其应用场
- MATLAB算法实战应用案例精讲-【目标检测】机器视觉-工业相机(补充篇)
林聪木
数码相机matlab算法
目录知识储备光学系统设计全过程算法原理工业相机基本参数以及选型工业相机基本参数:如何选择合适的工业相机:分辨率分辨率的定义与“检测/测量精度”的区别分辨率与相机的匹配相机关键参数设置工业相机的曝光、曝光时间、快门、增益什么是曝光?什么是快门影响曝光的因素工业相机-坐标系和机械手坐标系的标定工业相机-缺陷检测一、相机的选择(1)工业数字相机的分类:(2)相机的主要参数(3)工业数字摄像机主要接口类型
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- 对换脸、动嘴生成的视频做初筛
之群害马
音视频计算机视觉opencv
首尾帧人脸差异检测代码概述本脚本实现了一个简单的视频筛查系统,主要功能是通过比较视频首帧和尾帧中的人脸差异来判断视频是否合格。如果视频中没有人脸或存在其他异常情况,视频将被移动到错误目录中。具体来说,系统包含以下几个主要步骤:加载视频文件:尝试打开视频文件,并读取首帧和尾帧。人脸检测:使用OpenCV的Haar级联分类器检测视频首帧和尾帧中的人脸。人脸提取与标准化:从检测到的人脸区域中提取并标准化
- 智能硬件定位技术发展趋势
2401_88540551
智能硬件智能手表物联网宠物智慧城市uni-app微信小程序
在科技飞速进步的当下,智能硬件定位技术作为众多领域的关键支撑,正沿着多元且极具创新性的路径蓬勃发展,持续重塑我们的生活与工作方式。一、精度提升的极致追求当前,智能硬件定位精度虽已满足诸多日常应用,但未来发展仍聚焦高精度突破。在自动驾驶领域,厘米级甚至毫米级定位精度至关重要。科研人员正致力于融合多种定位技术,如卫星定位、惯性导航、视觉识别与高精度地图匹配。通过复杂算法协同运作,车辆在复杂路况下能精准
- 51-31 CVPR’24 | VastGaussian,3D高斯大型场景重建
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶智慧城市AIGC计算机视觉数据挖掘
2024年2月,清华大学、华为和中科院联合发布的VastGaussian模型,实现了基于3DGaussianSplatting进行大型场景高保真重建和实时渲染。Abstract现有基于NeRF大型场景重建方法,往往在视觉质量和渲染速度方面存在局限性。虽然最近3DGaussiansSpltting在小规模和以对象为中心的场景中效果很好,但由于视频内存有限、优化时间长、外观变化明显,将其扩展到大型场景
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- 商汤绝影端到端自动驾驶的迭代优化
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
自动驾驶,端到端,迭代优化,深度学习,感知,规划,控制,模型训练,数据增强,模型微调1.背景介绍随着人工智能和计算机视觉技术的飞速发展,自动驾驶汽车从科幻走进了现实。商汤科技推出的绝影端到端自动驾驶系统,就是其中的佼佼者。本文将深入剖析商汤绝影端到端自动驾驶系统的迭代优化过程,帮助读者理解其背后的技术原理和架构设计。2.核心概念与联系商汤绝影端到端自动驾驶系统的核心架构如下:graphLRA[感知
- AI日报 - 2025年02月16日 - 推特版
訾博ZiBo
AI日报人工智能
今日概览(60秒速览)▎AGI突破|阿里巴巴发布Qwen2.5-VL视觉语言模型,支持多模态交互新模型评测榜性能提升30%▎商业动向|NVIDIABlackwell超级芯片网络研讨会将聚焦生成式AI创新预计推动算力市场增长15%▎政策追踪|印度总统宣布AI国家战略升级,聚焦半导体与算法研发计划未来3年投入50亿美元一、今日热点(HotTopic)1.1阿里巴巴发布Qwen2.5-VL系列视觉语言模
- vue单词汇总
小六妹妹
vue.js前端javascript
vueVue单词大全0~9vue:(view)视图,视觉;message:消息;item:项目;in:在...里面;在(某范围或空间内的)某一点;在(某物的形体或范围)中;在…内;在…中;进入;counter:计数器;柜台;对立面;el:(element)(计算计)挂载元素;Vue实例挂载的元素节点;data:数据;methods:方法,方法论;add:添加;reduce:减少;10~19func
- CVPR‘24 | 百度开源DETRs在实时目标检测中胜过YOLOs
3D视觉工坊
3D视觉从入门到精通百度目标检测人工智能计算机视觉
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:目标检测,拉你入群。文末附行业细分群论文题目:DETRsBeatYOLOsonReal-timeObjectDetection作者:WenyuLv,YianZhao等作者机构:BaiduInc.论文链接:https://arxiv.org/pdf/2304.08069.pdf代
- 新书速览|细说PyTorch深度学习:理论、算法、模型与编程实现
全栈开发圈
深度学习pytorch算法
超详细的PyTorch深度学习入门书,100余个编程示例+6大热点案例,大咖带路,边学边实践。本书特点:1.专家编撰:由资深专家精心编撰,通俗易懂,娓娓道来2.范例丰富:100余个编程教学示例,帮你深入理解,边学习、边操练。3.实战应用:6大典型应用,原理与实操并重,快速掌握提升实战能力。4技术先进:视觉transformer模型详解,紧跟大模型核心技术。5易于上手:Pytorch详解并使用Pyt
- 使用OpenCV在Visual Studio上编译x86或x64平台的应用程序
程序世界航海
opencvvisualstudio人工智能编程
OpenCV是一个广泛使用的计算机视觉库,它提供了丰富的图像处理和计算机视觉算法。如果你想在VisualStudio上编译一个使用OpenCV的应用程序,并且需要针对特定的x86或x64平台进行优化,那么本文将为你提供一些指导。以下是在VisualStudio中编译x86或x64平台上的OpenCV应用程序的步骤:步骤1:安装VisualStudio和OpenCV首先,确保你已经安装了最新版本的V
- 用realsense d435i传感器在实际环境中跑ORB_SLAM3,顺带解决一部分编译问题
睫力上爬
SLAM日常折腾传感器ORB_SLAM3
是的ORB_SLAM3来了,时隔五年,它来带的惊喜到底是啥呢?一个完全依赖于最大后验估计(MAP)的单/双目惯导融合系统高回召的地点识别功能(High-recallplacerecognition)第一个完整的多地图系统(multi-map)一个抽象的相机模型表示论文地址论文细节今天不说,今天主要先拿到代码,并且用自己的传感器试试实际效果编译终端拉代码记得提前安装好OpenCV,Eigen,和Pa
- ROS教程(六):Rviz显示USB摄像头(详细图文)
Leslie___Cheung
ROSROSrvizusb摄像头
目录前言一、RVIZ介绍1.数据类型介绍2.界面介绍二、配置RVIZ1.打开RVIZ2.添加模块三、启动总结(最重要的)前言上一章讲解了如何使用OpenCV调用电脑摄像头或USB摄像头,本章Leslie就讲解如何使用rviz来显示摄像头的画面。一、RVIZ介绍1.数据类型介绍参考ROS教程(四)->数据类型介绍2.界面介绍二、配置RVIZ1.打开RVIZ打开终端,输入rvi
- 【ORB_SLAM系列3】—— 如何在Ubuntu18.04中使用自己的单目摄像头运行ORB_SLAM3(亲测有效,踩坑记录)
啥也不会的研究僧
SLAM算法安装与实践记录ubuntu计算机视觉人工智能自动驾驶
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、ORB_SLAM3源码编译二、ORB_SLAM3实时单目相机测试1.查看摄像头的话题2.运行测试三.运行测试可能的报错1.报错一(1)问题描述(2)原因分析(3)解决2.报错二(1)问题描述(2)解决前言本次教程运行ORB_SLAM3,所需的环境如下:Ubuntu18.04、ros版本:melodicOpencv4.5
- 奥比中光3D机器视觉相机能连接halcon吗?
视觉人机器视觉
机器视觉3D3d数码相机视觉检测c#
奥比中光的设备与Halcon的兼容性可以通过以下方式实现:数据接口的通用性奥比中光的相机(如AstroPro、大白等)支持通过UVC协议获取彩色图像,深度数据则通过OpenNI或ROS2接口传输105。若Halcon支持这些协议或标准接口(如ROS消息、OpenCV图像流),则可通过直接调用或二次开发实现连接。例如,通过Python或C#脚本将图像数据从相机传输至Halcon的处理流程中。SDK与
- 探秘 DeepSeek R1 模型:跨越多领域的科技奇迹,引领智能应用新浪潮
羑悻的小杀马特.
AI学习科技deepseekAI大模型
DeepSeekR1模型功能强大,应用广泛。在自然语言处理、计算机视觉、推荐系统和医疗等领域都能发挥作用。本文介绍了其在各领域的应用场景和代码示例,助你深入了解它。目录编辑一、本篇背景:二、DeepSeekR1模型概述:2.1模型特点:2.2技术原理:三、自然语言处理领域的应用:3.1文本分类:3.1.1应用场景:3.1.2代码演示:3.2情感分析:3.2.1应用场景:3.2.2代码演示:3.3机
- Ubuntu 安装 OpenCV (C++)
LegendBIT
程序开发--基本工具ubuntuopencvc++
版本详情:Ubuntu:22.04+5.15.0-133-genericgcc:11.4.0g++:11.4.0OpenCV:4.7.01.卸载OpenCV进入原先编译opencv的build目录,在该目录下打开终端,执行以下代码(如果build已经删除了,可以重新编译一遍该版本的opencv,然后在最后一步执行sudomakeuninstall)sudomakeuninstallcd..sudo
- QT5在windows下调用OpenCV库出现: undefined reference to `xxxxx' 错误解决办法(适用MinGW编译器)。
DS小龙哥
QT(C++)应用软件开发AI人工智能opencv
一、环境介绍window系统:win10X64QT版本:5.12QT5.12自带的MinGW编译器版本:mingw730_32与mingw730_64在QT的安装目录下,可以查看MinGW编译器的版本:二、使用OpenCV出现的问题在QT框架代码里使用老版本的分类器(cvLoad、cvHaarDetectObjects)处理图像时,正常编译没有问题,当使用新版本级联分类器(CascadeClass
- 可对画面进行平台传输,实时查看监控的智慧交通开源了
AI服务老曹
开源人工智能大数据物联网
智慧交通视觉监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。项目搭建地址项目开源地址:yihecode-server本项目基于ai场景而开发,提供算法模型管理、摄像头管理、告警管理、数
- 【最全基础知识1】机器视觉系统硬件组成之工业相机篇
51camera
工业相机工业相机机器视觉机器视觉硬件工业照相机1024程序员节
工业相机是一种非常重要的机器视觉器件,它能够将被采集的图像信息通过电路转换成电信号,再通过模数转换器(ADC)将其转化为数字信号,最后以标准的视频信号输出。工业相机在机器视觉领域得到了广泛应用,包括质量控制、工业检测、医疗诊断、安全监控以及交通管理等诸多领域。目录机器视觉是通过光学装置和非接触传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。简单来说,机器视觉是用
- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- c语言%.4f,4f,4F法则是什么
满天乱走
c语言%.4f
4F法则是什么KISS是keepitSimpleStupid,即“使之简单笨拙”。是指广告创意的简洁原则,广告创意主题要突出,信息要凝练,无关紧要的要删去。电视广告镜头要破除繁琐,反映主信息;平面广告要讲究视觉流程,突显主题,越单纯越易为受众接受。4F是指优秀的...c语言中.4f是什么意思.4f是用于输出浮点数的格式字符串,输出时保留四位小数,输出宽度为10位,不足十位右侧补空格,超过十位按实际
- OpenCV 简介
奇点创客
OpenCV
OpenCV(OpenSourceComputerVisionLibrary,开源计算机视觉库:http://opencv.org)是一个开放源代码库,其中包含数百种计算机视觉算法。本文档介绍所谓的OpenCV2.xAPI,与基于C的OpenCV1.xAPI相比,该API本质上是一套C++API(自OpenCV2.4发行以来,不推荐再使用CAPI,并且不使用“C”编译器进行测试)。OpenCV具有
- OpenCV机器学习(1)人工神经网络 - 多层感知器类cv::ml::ANN_MLP
村北头的码农
OpenCVopencv机器学习人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::ml::ANN_MLP是OpenCV库中的一部分,用于实现人工神经网络-多层感知器(ArtificialNeuralNetwork-Multi-LayerPerceptron,ANN-MLP)。它提供了一种方式来创建和训练多层感知器模型,以解决分类、回归等
- 本地部署DeepSeek模型技术指南
Evaporator Core
apacheDoris人工智能deepseek
DeepSeek模型是一种先进的深度学习模型,广泛应用于自然语言处理、计算机视觉等领域。为了充分利用DeepSeek模型的强大功能,许多开发者和研究人员选择在本地环境中部署该模型。本文将详细介绍如何在本地环境中部署DeepSeek模型,包括环境准备、模型下载、配置、优化以及代码实现等内容。通过本文的指导,您将能够在本地成功部署并运行DeepSeek模型。1.环境准备在部署DeepSeek模型之前,
- 什么是3D视觉无序抓取?
视觉人机器视觉
机器视觉3D3d人工智能视觉检测计算机视觉c#
3D视觉无序抓取是一种结合三维视觉技术、机器人控制与智能算法的工业自动化解决方案,旨在实现机器人对散乱、无序堆放的物体进行自主识别、定位和抓取的操作。其核心是通过3D视觉系统获取物体的三维空间信息,结合路径规划与避障算法,引导机械臂完成高精度抓取任务,无需依赖预先设定的固定程序或工装夹具。以下是其关键要点:核心组成与技术原理三维视觉感知:采用3D相机(如结构光、双目视觉、ToF技术)扫描物体表面,
- 计算机视觉如何快速入门?
Frunze软件开发
日常问题回答开发语言计算机视觉工业异常检测论文
目录1.明确研究方向2.学习基础知识3.掌握核心算法4.实践项目5.阅读文献6.复现经典论文7.改进与创新总结计算机视觉(ComputerVision)是一个复杂且广泛的领域,尤其是工业异常检测这种特定方向,需要结合理论知识和实践技能。以下是一些具体的、可操作的建议,也是个人实际路径的一个总结,希望可以帮助到你快速入门并完成一篇论文。1.明确研究方向-工业异常检测的核心是识别图像或视频中的异常区域
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不