在我的上一篇文章JavaNIO详解(一)中介绍了关于标准输入输出NIO相关知识, 本篇将重点介绍基于网络编程NIO(异步IO)。
异步 I/O 是一种没有阻塞地读写数据的方法。通常,在代码进行 read()
调用时,代码会阻塞直至有可供读取的数据。同样, write()
调用将会阻塞直至数据能够写入,关于同步的IO请参考另一篇文章Java IO。
另一方面,异步 I/O 调用不但不会阻塞,相反,您可以注册对特定 I/O 事件诸如数据可读、新连接到来等等,而在发生这样感兴趣的事件时,系统将会告诉您。
异步 I/O 的一个优势在于,它允许您同时根据大量的输入和输出执行 I/O。同步程序常常要求助于轮询,或者创建许许多多的线程以处理大量的连接。使用异步 I/O,您可以监听任何数量的通道上的事件,不用轮询,也不用额外的线程。
在我的JavaNIO详解(一)中已经详细介绍了Java NIO三个核心对象中的Buffer和Channel,现在我们就重点介绍一下第三个核心对象Selector。Selector是一个对象,它可以注册到很多个Channel上,监听各个Channel上发生的事件,并且能够根据事件情况决定Channel读写。这样,通过一个线程管理多个Channel,就可以处理大量网络连接了。
有了Selector,我们就可以利用一个线程来处理所有的channels。线程之间的切换对操作系统来说代价是很高的,并且每个线程也会占用一定的系统资源。所以,对系统来说使用的线程越少越好。
但是,需要记住,现代的操作系统和CPU在多任务方面表现的越来越好,所以多线程的开销随着时间的推移,变得越来越小了。实际上,如果一个CPU有多个内核,不使用多任务可能是在浪费CPU能力。不管怎么说,关于那种设计的讨论应该放在另一篇不同的文章中。在这里,只要知道使用Selector能够处理多个通道就足够了。
下面这幅图展示了一个线程处理3个 Channel的情况:
异步 I/O 中的核心对象名为 Selector。Selector 就是您注册对各种 I/O 事件兴趣的地方,而且当那些事件发生时,就是这个对象告诉您所发生的事件。
Selector selector = Selector.open();
然后,就需要注册Channel到Selector了。
为了能让Channel和Selector配合使用,我们需要把Channel注册到Selector上。通过调用 channel.register()
方法来实现注册:
channel.configureBlocking(false);
SelectionKey key =channel.register(selector,SelectionKey.OP_READ);
注意,注册的Channel 必须设置成异步模式 才可以,,否则异步IO就无法工作,这就意味着我们不能把一个FileChannel注册到Selector,因为FileChannel没有异步模式,但是网络编程中的SocketChannel是可以的。
需要注意register()方法的第二个参数,它是一个“interest set”,意思是注册的Selector对Channel中的哪些时间感兴趣,事件类型有四种:
通道触发了一个事件意思是该事件已经 Ready(就绪)。所以,某个Channel成功连接到另一个服务器称为 Connect Ready
。一个ServerSocketChannel准备好接收新连接称为 Accept Ready
,一个有数据可读的通道可以说是 Read Ready
,等待写数据的通道可以说是Write Ready
。
上面这四个事件对应到SelectionKey中的四个常量:
1. SelectionKey.OP_CONNECT
2. SelectionKey.OP_ACCEPT
3. SelectionKey.OP_READ
4. SelectionKey.OP_WRITE
如果你对多个事件感兴趣,可以通过or操作符来连接这些常量:
int interestSet = SelectionKey.OP_READ | SelectionKey.OP_WRITE;
请注意对register()
的调用的返回值是一个SelectionKey。 SelectionKey 代表这个通道在此 Selector 上的这个注册。当某个 Selector 通知您某个传入事件时,它是通过提供对应于该事件的 SelectionKey 来进行的。SelectionKey 还可以用于取消通道的注册。SelectionKey中包含如下属性:
就像我们在前面讲到的把Channel注册到Selector来监听感兴趣的事件,interest set就是你要选择的感兴趣的事件的集合。你可以通过SelectionKey对象来读写interest set:
int interestSet = selectionKey.interestOps();
boolean isInterestedInAccept = interestSet & SelectionKey.OP_ACCEPT;
boolean isInterestedInConnect = interestSet & SelectionKey.OP_CONNECT;
boolean isInterestedInRead = interestSet & SelectionKey.OP_READ;
boolean isInterestedInWrite = interestSet & SelectionKey.OP_WRITE;
通过上面例子可以看到,我们可以通过用AND 和SelectionKey 中的常量做运算,从SelectionKey中找到我们感兴趣的事件。
ready set 是通道已经准备就绪的操作的集合。在一次选Selection之后,你应该会首先访问这个ready set。Selection将在下一小节进行解释。可以这样访问ready集合:
int readySet = selectionKey.readyOps();
可以用像检测interest集合那样的方法,来检测Channel中什么事件或操作已经就绪。但是,也可以使用以下四个方法,它们都会返回一个布尔类型:
selectionKey.isAcceptable();
selectionKey.isConnectable();
selectionKey.isReadable();
selectionKey.isWritable();
我们可以通过SelectionKey获得Selector和注册的Channel:
Channel channel = selectionKey.channel();
Selector selector = selectionKey.selector();
可以将一个对象或者更多信息attach 到SelectionKey上,这样就能方便的识别某个给定的通道。例如,可以附加 与通道一起使用的Buffer,或是包含聚集数据的某个对象。使用方法如下:
selectionKey.attach(theObject);
Object attachedObj = selectionKey.attachment();
还可以在用register()方法向Selector注册Channel的时候附加对象。如:
SelectionKey key = channel.register(selector, SelectionKey.OP_READ, theObject);
一旦向Selector注册了一或多个通道,就可以调用几个重载的select()
方法。这些方法返回你所感兴趣的事件(如连接、接受、读或写)已经准备就绪的那些通道。换句话说,如果你对“Read Ready”的通道感兴趣,select()方法会返回读事件已经就绪的那些通道:
select()方法返回的int值表示有多少通道已经就绪。亦即,自上次调用select()方法后有多少通道变成就绪状态。如果调用select()方法,因为有一个通道变成就绪状态,返回了1,若再次调用select()方法,如果另一个通道就绪了,它会再次返回1。如果对第一个就绪的channel没有做任何操作,现在就有两个就绪的通道,但在每次select()方法调用之间,只有一个通道处于就绪状态。
一旦调用了select()
方法,它就会返回一个数值,表示一个或多个通道已经就绪,然后你就可以通过调用selector.selectedKeys()
方法返回的SelectionKey集合来获得就绪的Channel。请看演示方法:
Set selectedKeys = selector.selectedKeys();
当你通过Selector注册一个Channel时,channel.register()
方法会返回一个SelectionKey对象,这个对象就代表了你注册的Channel。这些对象可以通过selectedKeys()
方法获得。你可以通过迭代这些selected key来获得就绪的Channel,下面是演示代码:
Set selectedKeys = selector.selectedKeys();
Iterator keyIterator = selectedKeys.iterator();
while(keyIterator.hasNext()) {
SelectionKey key = keyIterator.next();
if(key.isAcceptable()) {
// a connection was accepted by a ServerSocketChannel.
} else if (key.isConnectable()) {
// a connection was established with a remote server.
} else if (key.isReadable()) {
// a channel is ready for reading
} else if (key.isWritable()) {
// a channel is ready for writing
}
keyIterator.remove();
}
这个循环遍历selected key的集合中的每个key,并对每个key做测试来判断哪个Channel已经就绪。
请注意循环中最后的keyIterator.remove()
方法。Selector对象并不会从自己的selected key集合中自动移除SelectionKey实例。我们需要在处理完一个Channel的时候自己去移除。当下一次Channel就绪的时候,Selector会再次把它添加到selected key集合中。
SelectionKey.channel()
方法返回的Channel需要转换成你具体要处理的类型,比如是ServerSocketChannel或者SocketChannel等等。
某个线程调用select()方法后阻塞了,即使没有通道就绪,也有办法让其从select()方法返回。只要让其它线程在第一个线程调用select()方法的那个对象上调用Selector.wakeup()
方法即可。阻塞在select()方法上的线程会立马返回。
如果有其它线程调用了wakeup()方法,但当前没有线程阻塞在select()方法上,下个调用select()方法的线程会立即“醒来(wake up)”
当用完Selector后调应道掉用close()
方法,它将关闭Selector并且使注册到该Selector上的所有SelectionKey实例无效。通道本身并不会关闭。
下面通过一个MultiPortEcho的例子来演示一下上面整个过程。
public class MultiPortEcho {
private int ports[];
private ByteBuffer echoBuffer = ByteBuffer.allocate(1024);
public MultiPortEcho(int ports[]) throws IOException {
this.ports = ports;
go();
}
private void go() throws IOException {
// 1. 创建一个selector,select是NIO中的核心对象
// 它用来监听各种感兴趣的IO事件
Selector selector = Selector.open();
// 为每个端口打开一个监听, 并把这些监听注册到selector中
for (int i = 0; i < ports.length; ++i) {
//2. 打开一个ServerSocketChannel
//其实我们没监听一个端口就需要一个channel
ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking(false);//设置为非阻塞
ServerSocket ss = ssc.socket();
InetSocketAddress address = new InetSocketAddress(ports[i]);
ss.bind(address);//监听一个端口
//3. 注册到selector
//register的第一个参数永远都是selector
//第二个参数是我们要监听的事件
//OP_ACCEPT是新建立连接的事件
//也是适用于ServerSocketChannel的唯一事件类型
SelectionKey key = ssc.register(selector, SelectionKey.OP_ACCEPT);
System.out.println("Going to listen on " + ports[i]);
}
//4. 开始循环,我们已经注册了一些IO兴趣事件
while (true) {
//这个方法会阻塞,直到至少有一个已注册的事件发生。当一个或者更多的事件发生时
// select() 方法将返回所发生的事件的数量。
int num = selector.select();
//返回发生了事件的 SelectionKey 对象的一个 集合
Set selectedKeys = selector.selectedKeys();
//我们通过迭代 SelectionKeys 并依次处理每个 SelectionKey 来处理事件
//对于每一个 SelectionKey,您必须确定发生的是什么 I/O 事件,以及这个事件影响哪些 I/O 对象。
Iterator it = selectedKeys.iterator();
while (it.hasNext()) {
SelectionKey key = (SelectionKey) it.next();
//5. 监听新连接。程序执行到这里,我们仅注册了 ServerSocketChannel
//并且仅注册它们“接收”事件。为确认这一点
//我们对 SelectionKey 调用 readyOps() 方法,并检查发生了什么类型的事件
if ((key.readyOps() & SelectionKey.OP_ACCEPT) == SelectionKey.OP_ACCEPT) {
//6. 接收了一个新连接。因为我们知道这个服务器套接字上有一个传入连接在等待
//所以可以安全地接受它;也就是说,不用担心 accept() 操作会阻塞
ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
SocketChannel sc = ssc.accept();
sc.configureBlocking(false);
// 7. 讲新连接注册到selector。将新连接的 SocketChannel 配置为非阻塞的
//而且由于接受这个连接的目的是为了读取来自套接字的数据,所以我们还必须将 SocketChannel 注册到 Selector上
SelectionKey newKey = sc.register(selector,SelectionKey.OP_READ);
it.remove();
System.out.println("Got connection from " + sc);
} else if ((key.readyOps() & SelectionKey.OP_READ) == SelectionKey.OP_READ) {
// Read the data
SocketChannel sc = (SocketChannel) key.channel();
// Echo data
int bytesEchoed = 0;
while (true) {
echoBuffer.clear();
int r = sc.read(echoBuffer);
if (r <= 0) {
break;
}
echoBuffer.flip();
sc.write(echoBuffer);
bytesEchoed += r;
}
System.out.println("Echoed " + bytesEchoed + " from " + sc);
it.remove();
}
}
// System.out.println( "going to clear" );
// selectedKeys.clear();
// System.out.println( "cleared" );
}
}
static public void main(String args2[]) throws Exception {
String args[]={"9001","9002","9003"};
if (args.length <= 0) {
System.err.println("Usage: java MultiPortEcho port [port port ...]");
System.exit(1);
}
int ports[] = new int[args.length];
for (int i = 0; i < args.length; ++i) {
ports[i] = Integer.parseInt(args[i]);
}
new MultiPortEcho(ports);
}
}