前言
解答题的顺序变化是比较大的,而且压轴题目也发生了变化。
三、解答题
例17【2019年高考数学试卷理科新课标Ⅱ第17题】如图,长方体\(ABCD-A_1B_1C_1D_1\)的底面\(ABCD\)是正方形,点\(E\)在棱\(AA_1\)上,\(BE\perp EC_1\).
(1).证明:\(BE\perp\)平面\(EB_1C_1\);
分析:需要证明线面垂直,往往先要转化为证明线线垂直;
解析:由已知\(B_1C_1\perp\)平面\(ABB_1A_1\),\(BE\subset\)平面\(ABB_1A_1\),故\(B_1C_1\perp BE\),
又\(BE\perp EC_1\),\(B_1C_1\subset\)平面\(EB_1C_1\),\(EC_1\subset\)平面\(EB_1C_1\),\(B_1C_1\cap EC_1=C_1\),
故\(BE\perp\)平面\(EB_1C_1\);
(2).若\(AE=A_1E\),求二面角\(B-EC-C_1\)的正弦值;
解析:由(1)知道\(\angle BEB_1=90^{\circ}\),由题设可知\(Rt\triangle ABE Rt\triangle A_1B_1E\),所以\(\angle AEB=45^{\circ}\),故\(AE=AB\),\(AA_1=2AB\),
以\(D\)为坐标原点,\(\overrightarrow{DA}\)的方向为\(x\)轴的正方向,\(|\overrightarrow{DA}|\)为单位长,建立如图所示的空间直角坐标系\(D-xyz\),
则\(C(0,1,0)\),\(B(1,1,0)\),\(C_1(0,1,2)\),\(E(1,0,1)\),\(\overrightarrow{CB}=(1,0,0)\),\(\overrightarrow{CE}=(1,-1,1)\),\(\overrightarrow{CC_1}=(0,0,2)\),
设平面\(EBC\)的法向量\(\vec{n}=(x,y,z)\),
则\(\left\{\begin{array}{l}{\overrightarrow{CB}\cdot \vec{n}=0}\\{\overrightarrow{CE}\cdot \vec{n}=0}\end{array}\right.\),即\(\left\{\begin{array}{l}{x=0}\\{x-y+z=0}\end{array}\right.\),所以可以赋值取\(\vec{n}=(0,-1,-1)\),
设平面\(ECC_1\)的法向量\(\vec{m}=(x,y,z)\),
则\(\left\{\begin{array}{l}{\overrightarrow{CC_1}\cdot \vec{m}=0}\\{\overrightarrow{CE}\cdot \vec{m}=0}\end{array}\right.\),即\(\left\{\begin{array}{l}{2z=0}\\{x-y+z=0}\end{array}\right.\),所以可以赋值取\(\vec{m}=(1,1,0)\),
于是,\(cos<\vec{n},\vec{m}>=\cfrac{\vec{n}\cdot\vec{m}}{|\vec{n}||\vec{m}|}=-\cfrac{1}{2}\),
即\(<\vec{n},\vec{m}>=120^{\circ}\),所以,二面角\(B-EC-C_1\)的正弦值为\(\cfrac{\sqrt{3}}{2}\)。
解后反思:当然,本题目同样可用点\(C\)做为坐标原点来建立坐标系。
例18【2019年高考数学试卷理科新课标Ⅱ第18题】
分析:
解析:
解后反思:
相关链接:
例19【2019年高考数学试卷理科新课标Ⅱ第19题】已知数列\(\{a_n\}\)和数列\(\{b_n\}\)满足\(a_1=1\),\(b_1=0\),\(4a_{n+1}=3a_n-b_n+4\),\(4b_{n+1}=3b_n-a_n-4\),
(1).证明:\(\{a_n+b_n\}\)是等比数列,\(\{a_n-b_n\}\)是等差数列,
分析:考查等差等比数列的证明方法(定义法和等差[比]中项法),以及整体意识或字母的内涵和方程思想。
解析:由题设可知\(4a_{n+1}=3a_n-b_n+4\)①,\(4b_{n+1}=3b_n-a_n-4\)②,
由①+②得到,\(4(a_{n+1}+b_{n+1})=2(a_n+b_n)\);即\(a_{n+1}+b_{n+1}=\cfrac{1}{2}(a_n+b_n)\);
又由于\(a_1+b_1=1\neq 0\),所以数列\(\{a_n+b_n\}\)是首项为\(1\),公比为\(\cfrac{1}{2}\)的等比数列;
由①-②得到,\(4(a_{n+1}-b_{n+1})=4(a_n-b_n)+8\);即\(a_{n+1}-b_{n+1}=a_n-b_n+2\);
又由于\(a_1-b_1=1\),所以数列\(\{a_n-b_n\}\)是首项为\(1\),公差为\(2\)的等差数列;
【注意细节】由\(a_{n+1}+b_{n+1}=\cfrac{1}{2}(a_n+b_n)\)不能得到\(\cfrac{a_{n+1}+b_{n+1}}{a_n+b_n}=\cfrac{1}{2}\),还需要条件\(a_1+b_1\neq 0\)的配合;
相关链接:对数列中\(a_n\)的内涵的理解
(2).求\(\{a_n\}\)和\(\{b_n\}\)的通项公式;
分析:考察数列的通项公式的求法;
解析:由(1)分别写出数列\(\{a_n+b_n\}\)和数列\(\{a_n-b_n\}\)的通项公式,
\(a_n+b_n=1\times (\cfrac{1}{2})^{n-1}=\cfrac{1}{2^{n-1}}\)③,\(a_n-b_n=1+(n-1)\times 2=2n-1\)④;
由③+④,变形整理得到,\(a_n=\cfrac{1}{2^n}+n-\cfrac{1}{2}\),\(n\in N^*\);
由③-④,变形整理得到,\(b_n=\cfrac{1}{2^n}-n+\cfrac{1}{2}\),\(n\in N^*\);
相关链接:1、求数列的通项公式;2、方程思想
例20【2019年高考数学试卷理科新课标Ⅱ第20题】
分析:
解析:
解后反思:
相关链接:
例21【2019年高考数学试卷理科新课标Ⅱ第21题】
分析:
解析:
解后反思:
相关链接:
例22【2019年高考数学试卷理科新课标Ⅱ第22题】在极坐标系中,\(O\)为极点,点\(M(\rho_0,\theta_0)(\rho_0>0)\)在曲线\(C:\rho=4sin\theta\)上,直线\(l\)过点\(A(4,0)\)且与\(OM\)垂直,垂足为\(P\)。
(1).当\(\theta_0=\cfrac{\pi}{3}\)时,求\(\rho_0\)及\(l\)的极坐标方程;
分析:当\(\theta_0=\cfrac{\pi}{3}\)时,由\(\rho=4sin\theta\),得到\(\rho_0=4sin\cfrac{\pi}{3}=2\sqrt{3}\);
求直线\(l\)的极坐标方程有以下两个思路,可以比较看,哪一种更简便。
思路1:过点\(A\)的直线\(l\)的斜率为\(k=-\cfrac{1}{tan\frac{\pi}{3}}=-\cfrac{\sqrt{3}}{3}\),
故直线\(l\)的普通方程为\(y-0=-\cfrac{\sqrt{3}}{3}(x-4)\),
再用\(y=\rho\cdot sin\theta\)和\(x=\rho\cdot cos\theta\)代入上式,
变形直线的极坐标方程为\(\sqrt{3}\rho cos\theta+3\rho sin\theta=4\sqrt{3}\),整理为
\(\rho\cdot sin(\theta+\cfrac{\pi}{6})=2\)或者\(\rho\cdot cos(\theta-\cfrac{\pi}{3})=2\)
思路2:如图所示,在极坐标系下直接思考和运算,在\(\triangle OAB\)中,已知\(OA=4\),\(\angle A=\cfrac{\pi}{6}\),则\(OB=2\),
在直线\(l\)上任取一点\(P(\rho,\theta)\),则在\(\triangle OPB\)中,已知\(OP=\rho\),\(\angle POB=\cfrac{\pi}{3}-\theta\),\(OB=2\),
则\(\rho\cdot cos(\cfrac{\pi}{3}-\theta)=2\),也即\(\rho\cdot cos(\theta-\cfrac{\pi}{3})=2\)
解后反思:相比较而言,在极坐标系下求直线的方程,我们只需要借助解三角形就可以搞定了,原因是在极坐标系下\(\rho\)的含义一定是极点到动点的线段的长度,这样就可以顺利借助解三角形来完成了。
(2).当\(M\)在\(C\)上运动且\(P\)在线段\(OM\)上时,求\(P\)点轨迹的极坐标方程。
分析:同样的,求\(P\)点轨迹的极坐标方程,我们也可以有两个思路来考虑,
思路1:在直角坐标系下思考求解,然后转化划归。
设直线\(OM:y=kx\),则直线\(AP:y=-\cfrac{1}{k}(x-4)\),
则两条直线的交点\(P\)的参数方程为\(\left\{\begin{array}{l}{y=kx①}\\{y=-\cfrac{1}{k}(x-4)②}\end{array}\right.(k为参数,k\geqslant 1)\),
两式相乘,消去参数,得到\(y^2=-x(x-4)\),
即\(x^2+y^2-4x=0\),转化为极坐标方程为\(\rho^2=4\rho cos\theta\),
即\(\rho=4cos\theta\),对应的\(\theta\in [\cfrac{\pi}{4},\cfrac{\pi}{2})\),
再思考当\(k\)不存在时,点\(P\)落在原点,也满足题意,对应\(\theta=\cfrac{\pi}{2}\),
综上所述,\(P\)点轨迹的极坐标方程为\(\rho=4cos\theta\),\(\theta\in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\),
思路2:如图所示,在极坐标系下直接思考和运算,
设动点\(P(\rho,\theta)\),在\(\angle OAP\)中,\(OP=\rho\),我们很容易得到\(cos\theta=\cfrac{\rho}{4}\),
即\(\rho=4cos\theta\),且\(\theta\in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\),
故\(P\)点轨迹的极坐标方程为\(\rho=4cos\theta\),\(\theta\in [\cfrac{\pi}{4},\cfrac{\pi}{2}]\)。
解后反思:由这两小问题的解答过程比较分析,同意的问题,当放到极坐标下思考和运算会变得很简单,之所以我们感觉难,是因为我们对极坐标系很不熟悉而已。
相关链接:坐标系与参数方程的考向整理
例23【2019年高考数学试卷理科新课标Ⅱ第23题】
分析:
解析:
解后反思:
相关链接: