第一种情况:
数据集忘记转成cuda模式提示RuntimeError: Expected object of backend CUDA but got backend CPU for argument
device = torch.cuda('cuda:0')
net = MLP()
net = net.to(device)
data = data.to(device) #而不是直接data.to(device)
target = target.cuda()
logits = net(data).cuda()
第二种情况:提示CUDA: invalid device ordinal
可能是你的显卡序列号不对,显卡是从0开始算的,或者你的显卡不支持cuda,例如1050Ti就不支持cuda(很难受。。。)
这里是cuda的支持情况列表官网
https://developer.nvidia.com/cuda-gpus#compute
以下代码可以查看你的GPU
import pycuda
from pycuda import compiler
import pycuda.driver as drv
drv.init()
print("%d device(s) found." % drv.Device.count())
for ordinal in range(drv.Device.count()):
dev = drv.Device(ordinal)
print (ordinal, dev.name())
安装pycuda可能碰到的问题“failed building wheel for pycuda”,解决办法:
https://www.cnblogs.com/harvey888/p/5467276.html
本人使用cuda测试MNIST数据集的完整代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
batch_size=200
learning_rate=0.01
epochs=10
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.model = nn.Sequential(
nn.Linear(784, 200),
nn.ReLU(inplace=True),
nn.Linear(200, 200),
nn.ReLU(inplace=True),
nn.Linear(200, 10),
nn.ReLU(inplace=True),
)
def forward(self, x):
x = self.model(x)
return x
device = torch.device('cuda:0')
net = MLP()
net = net.to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader):
data = data.view(-1, 28*28)
data, target = data.to(device), target.cuda()
logits = net(data)
loss = criteon(logits, target)
optimizer.zero_grad()
loss.backward()
# print(w1.grad.norm(), w2.grad.norm())
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
test_loss = 0
correct = 0
for data, target in test_loader:
data = data.view(-1, 28 * 28)
data = data.to(device)
target = target.cuda()
logits = net(data)
test_loss += criteon(logits, target).item()
pred = logits.data.max(1)[1]
correct += pred.eq(target.data).sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
#结束