数据库-索引 (聚集索引和非聚集索引)

SQL索引在数据库优化中占有一个非常大的比例, 一个好的索引的设计,可以让你的效率提高几十甚至几百倍,在这里将带你一步步揭开他的神秘面纱。

一、简介     

       数据库的索引可以加快查询速度,原因是索引使用特定的数据结构(B-Tree)对特定的列额外组织存放,加快存储引擎(索引是存储引擎实现)查找记录的速度。
       索引优化是数据库优化的最重要手段。

       如果查询语句使用索引(通常是where条件匹配索引)就会利用树的结构加快查找,索引会按值查找到要查找的行在表中位置,不需回表查询数据的就是聚簇索引(索引和数据存放在一起)。通常是需要回表再查数据,需要消耗额外的磁盘IO。所以有些时候(如按顺序读取数据)全表扫描会比使用索引快的原因就在于此。

       查询条件只有一个字段时,在该字段建立索引即可,可优化的地方是对于text blob字段使用前缀索引。

       当查询条件有多个字段时,单列索引和多列索引有很大的区别。如果使用多列索引,where条件中字段的顺序非常重要,需要满足最左前缀列。最左前缀:查询条件中的所有字段需要从左边起按顺序出现在多列索引中,查询条件的字段数要小于等于多列索引的字段数,中间字段不能存在范围查询的字段(<,like等),这样的sql可以使用该多列索引。

 

 1.1 什么是索引?

  SQL索引有两种,聚集索引和非聚集索引,索引主要目的是提高了SQL Server系统的性能,加快数据的查询速度与减少系统的响应时间 

下面举两个简单的例子:

图书馆的例子:一个图书馆那么多书,怎么管理呢?建立一个字母开头的目录,例如:a开头的书,在第一排,b开头的在第二排,这样在找什么书就好说了,这个就是一个聚集索引,可是很多人借书找某某作者的,不知道书名怎么办?图书管理员在写一个目录,某某作者的书分别在第几排,第几排,这就是一个非聚集索引

字典的例子:字典前面的目录,可以按照拼音和部首去查询,我们想查询一个字,只需要根据拼音或者部首去查询,就可以快速的定位到这个汉字了,这个就是索引的好处,拼音查询法就是聚集索引,部首查询就是一个非聚集索引.

    看了上面的例子,下面的一句话大家就很容易理解了:聚集索引存储记录是物理上连续存在,而非聚集索引是逻辑上的连续,物理存储并不连续。就像字段,聚集索引是连续的,a后面肯定是b,非聚集索引就不连续了,就像图书馆的某个作者的书,有可能在第1个货架上和第10个货架上。还有一个小知识点就是:聚集索引一个表只能有一个,而非聚集索引一个表可以存在多个。

 

   1.2 索引的存储机制

    首先,无索引的表,查询时,是按照顺序存续的方法扫描每个记录来查找符合条件的记录,这样效率十分低下,举个例子,如果我们将字典的汉字随即打乱,没有前面的按照拼音或者部首查询,那么我们想找一个字,按照顺序的方式去一页页的找,这样效率有多底,大家可以想象。

       聚集索引和非聚集索引的根本区别是表记录的排列顺序和与索引的排列顺序是否一致,其实理解起来非常简单,还是举字典的例子:如果按照拼音查询,那么都是从a-z的,是具有连续性的,a后面就是b,b后面就是c, 聚集索引就是这样的,他是和表的物理排列顺序是一样的,例如有id为聚集索引,那么1后面肯定是2,2后面肯定是3,所以说这样的搜索顺序的就是聚集索引。非聚集索引就和按照部首查询是一样是,可能按照偏房查询的时候,根据偏旁‘弓’字旁,索引出两个汉字,张和弘,但是这两个其实一个在100页,一个在1000页,(这里只是举个例子),他们的索引顺序和数据库表的排列顺序是不一样的,这个样的就是非聚集索引。

      原理明白了,那他们是怎么存储的呢?在这里简单的说一下,聚集索引就是在数据库被开辟一个物理空间存放他的排列的值,例如1-100,所以当插入数据时,他会重新排列整个整个物理空间,而非聚集索引其实可以看作是一个含有聚集索引的表,他只仅包含原表中非聚集索引的列和指向实际物理表的指针。他只记录一个指针,其实就有点和堆栈差不多的感觉了

 

  1.3 什么情况下设置索引 

动作描述

使用聚集索引 

 使用非聚集索引

 外键列

 应

 应

 主键列

 应

 应

 列经常被分组排序(order by)

 应

 应

 返回某范围内的数据

 应

 不应

 小数目的不同值

 应

 不应

 大数目的不同值

 不应

 应

 频繁更新的列

不应 

 应

 频繁修改索引列

 不应

 应

 一个或极少不同值

 不应

 不应

 

建立索引的原则:

1) 定义主键的数据列一定要建立索引。

2) 定义有外键的数据列一定要建立索引。

3) 对于经常查询的数据列最好建立索引。

4) 对于需要在指定范围内的快速或频繁查询的数据列;

5) 经常用在WHERE子句中的数据列。

6) 经常出现在关键字order by、group by、distinct后面的字段,建立索引。如果建立的是复合索引,索引的字段顺序要和这些关键字后面的字段顺序一致,否则索引不会被使用。

7) 对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。

8) 对于定义为text、image和bit的数据类型的列不要建立索引。

9) 对于经常存取的列避免建立索引 

9) 限制表上的索引数目。对一个存在大量更新操作的表,所建索引的数目一般不要超过3个,最多不要超过5个。索引虽说提高了访问速度,但太多索引会影响数据的更新操作。

10) 对复合索引,按照字段在查询条件中出现的频度建立索引。在复合索引中,记录首先按照第一个字段排序。对于在第一个字段上取值相同的记录,系统再按照第二个字段的取值排序,以此类推。因此只有复合索引的第一个字段出现在查询条件中,该索引才可能被使用,因此将应用频度高的字段,放置在复合索引的前面,会使系统最大可能地使用此索引,发挥索引的作用。


二、多列索引适合的场景

       1.全字段匹配

       2.匹配部分最左前缀

       3.匹配第一列

       4.匹配第一列范围查询(可用用like a%,但不能使用like %b)

       5.精确匹配某一列和和范围匹配另外一列

       order by操作中出现的字段同样适用于按值查找的规则,where+order by中出现的字段需可以建立满足如上五种规则多列索引。使用多列所需需要按照最左索引列查找;不能跳过中间列;如果某一列是范围查询,那么其右边所有列无法使用索引。IN什么情况下是范围查询,什么情况下是多个等值查询?如果有order by排序时,多个等于条件查询就是范围查询,没有order by排序就没有限制。

       例如,建立多列索引(name, age, id),只能使用索引的前两列。in是范围查询
... where name='nginx.cn' and age in(15,16,17) order by id

       可以使用整个索引,in是按值查询
... where name='nginx.cn' and age in(15,16,17) and id ='3'

三、复合索引的建立以及最左前缀原则

      索引字符串值的前缀(prefixe)。如果你需要索引一个字符串数据列,那么最好在任何适当的情况下都应该指定前缀长度。
例如,如果有CHAR(200)数据列,如果前面10个或20个字符都不同,就不要索引整个数据列。索引前面10个或20个字符会节省大量的空间。你可以索引CHAR、VARCHAR、BINARY、VARBINARY、BLOB和TEXT数据列的前缀。
        假设你在表的state、city和zip数据列上建立了复合索引。索引中的数据行按照state/city/zip次序排列,因此它们也会自动地按照state/city和state次序排列。这意味着,即使你在查询中只指定了state值,或者指定state和city值,MySQL也可以使用这个索引。因此,这个索引可以被用于搜索如下所示的数据列组合:
       state, city, zip
       state, city
       state
       mysql不能利用这个索引来搜索没有包含在最左前缀的内容。例如,如果你按照city或zip来搜索,就不会使用到这个索引。如果你搜索给定的state和具体的ZIP代码(索引的1和3列),该索引也是不能用于这种组合值的,尽管MySQL可以利用索引来查找匹配的state从而缩小搜索的范围。
        如果你考虑给已经索引过的表添加索引,那么就要考虑你将增加的索引是否是已有的多列索引的最左前缀。如果是这样的,不用增加索引,因为已经有了(例如,如果你在state、city和zip上建立了索引,那么没有必要再增加state的索引)。

四、通过实例理解单例索引、多列索引以及最左前缀原则

      实例:现在我们想查出满足以下条件的用户id:
      mysql>SELECT `uid` FROM people WHERE lname`='Liu'  AND `fname`='Zhiqun' AND `age`=26 ; 因为我们不想扫描整表,故考虑用索引。

       1、单列索引:
       ALTER TABLE people ADD INDEX lname (lname);
     将lname列建索引,这样就把范围限制在lname='Liu'的结果集1上,之后扫描结果集1,产生满足fname='Zhiqun'的结果集2,再扫描结果集2,找到 age=26的结果集3,即最终结果。

      由于建立了lname列的索引,与执行表的完全扫描相比,效率提高了很多,但我们要求扫描的记录数量仍旧远远超过了实际所需 要的。虽然我们可以删除lname列上的索引,再创建fname或者age 列的索引,但是,不论在哪个列上创建索引搜索效率仍旧相似。

     2、多列索引:
     ALTER TABLE people ADD INDEX lname_fname_age (lame,fname,age);

     为了提高搜索效率,我们需要考虑运用多列索引,由于索引文件以B-Tree格式保存,所以我们不用扫描任何记录,即可得到最终结果。

     注:在mysql中执行查询时,只能使用一个索引,如果我们在lname,fname,age上分别建索引,执行查询时,只能使用一个索引,mysql会选择一个最严格(获得结果集记录数最少)的索引。

     3.最左前缀:顾名思义,就是最左优先,上例中我们创建了lname_fname_age多列索引,相当于创建了(lname)单列索引,(lname,fname)组合索引以及(lname,fname,age)组合索引。

     注:在创建多列索引时,要根据业务需求,where子句中使用最频繁的一列放在最左边。

使用自增主键的好处

那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,当一页写满,就会自动开辟一个新的页

使用非自增主键坏处

由于每次插入主键的值近似于随机,因此每次新纪录都要被插到现有索引页得中间某个位置,此时MySQL不得不为了将新记录插到合适位置而移动数据,甚至目标页面可能已经被回写到磁盘上而从缓存中清掉,此时又要从磁盘上读回来,这增加了很多开销,同时频繁的移动、分页操作造成了大量的碎片,得到了不够紧凑的索引结构,后续不得不通过OPTIMIZE TABLE来重建表并优化填充页面。

总结

如果InnoDB表的数据写入顺序能和B+树索引的叶子节点顺序一致的话,这时候存取效率是最高的。也就是下面这几种情况的存取效率最高:

  • 使用自增列(INT/BIGINT类型)做主键,这时候写入顺序是自增的,和B+数叶子节点分裂顺序一致;

  • 该表不指定自增列做主键,同时也没有可以被选为主键的唯一索引(上面的条件),这时候InnoDB会选择内置的ROWID作为主键,写入顺序和ROWID增长顺序一致;

  • 如果一个InnoDB表又没有显示主键,又有可以被选择为主键的唯一索引,但该唯一索引可能不是递增关系时(例如字符串、UUID、多字段联合唯一索引的情况),该表的存取效率就会比较差。

所以考虑主键的时候,一般需要自增、或者趋势自增




你可能感兴趣的:(java)